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We formulate and implement a spectral method for solving the Schrödinger equation, as 
it applies to quasi-one-dimensional materials and structures. This allows for computation of 
the electronic structure of important technological materials such as nanotubes (of arbitrary 
chirality), nanowires, nanoribbons, chiral nanoassemblies, nanosprings and nanocoils, in an 
accurate, efficient and systematic manner. Our work is motivated by the observation that one of 
the most successful methods for carrying out electronic structure calculations of bulk/crystalline 
systems — the plane-wave method — is a spectral method based on eigenfunction expansion. 
Our scheme avoids computationally onerous approximations involving periodic supercells often 
employed in conventional plane-wave calculations of quasi-one-dimensional materials, and also 
overcomes several limitations of other discretization strategies, e.g., those based on finite 
differences and atomic orbitals. The basis functions in our method — called helical waves (or 
twisted waves) — are eigenfunctions of the Laplacian with symmetry adapted boundary conditions, 
and are expressible in terms of plane waves and Bessel functions in helical coordinates.

We describe the setup of fast transforms to carry out discretization of the governing equations 
using our basis set, and the use of matrix-free iterative diagonalization to obtain the electronic 
eigenstates. Miscellaneous computational details, including the choice of eigensolvers, use of a 
preconditioning scheme, evaluation of oscillatory radial integrals and the imposition of a kinetic 
energy cutoff are discussed. We have implemented these strategies into a computational package 
called HelicES (Helical Electronic Structure). We demonstrate the utility of our method in carrying 
out systematic electronic structure calculations of various quasi-one-dimensional materials 
through numerous examples involving nanotubes, nanoribbons and nanowires. We also explore 
the convergence properties of our method, and assess its accuracy and computational efficiency by 
comparison against reference finite difference, transfer matrix method and plane-wave results. We 
anticipate that our method will find applications in computational nanomechanics and multiscale 
modeling, for carrying out transport calculations of interest to the field of semiconductor devices, 
and for the discovery of novel chiral phases of matter that are of relevance to the burgeoning 
quantum hardware industry.
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1. Introduction

Low dimensional materials have been intensely investigated in the past few decades due to their remarkable electronic, optical, 
transport and mechanical characteristics [1,2]. The properties of these materials often provide sharp contrasts with the bulk phase, 
and have led to various technological applications, including e.g., new kinds of sensors, actuators and energy harvesting devices 
[3–8]. Quasi-one-dimensional materials — which include nanotubes, nanoribbons, nanowires, nanocoils, as well as miscellaneous 
structures of biological origin [9,10] — are particularly interesting in this regard. This is due to the unique electronic properties 
that emerge as a result of the availability of a single extended spatial dimension in these structures [11–14], the possibility that 
they are associated with ferromagnetism, ferroelectricity, and superconductivity [15–18], and the fact that the behavior of these 
materials may be readily modulated via imposition of mechanical deformation modes such as torsion and/or stretching. [19–21]. 
Quasi-one-dimensional materials have also been investigated as hardware components for computing platforms — both conventional 
[22,23] and quantum [24]. The applications of such materials in the latter case are connected to anomalous transport (the Chiral 
Induced Spin Selectivity effect [25]) and exotic electronic states [26] that can be observed in such systems.

Given the importance of quasi-one-dimensional materials, it is highly desirable to have available computational methods that 
can efficiently characterize the unique electronic properties of these systems. However, conventional electronic structure calculation 
methods — based e.g. on plane-waves [27,28] — are generally inadequate in handling them. This is a result of the non-periodic 
symmetries in the atomic arrangements of such materials. As a result of these symmetries, the single particle Schrödinger equation 
associated with the electronic structure problem exhibits special invariances [29,30], which plane-waves, being intrinsically periodic, 
are unable to handle. For example, ground state plane-wave calculations of a twisted nanoribbon (see Fig. 1a) will usually involve 
making the system artificially periodic along the direction of the twist axis — thus resulting in a periodic supercell containing a 
very large number of atoms, as well as the inclusion of a substantial amount of vacuum padding in the directions orthogonal to the 
twist axis, so as to minimize interactions between periodic images. Together, these conditions can make such calculations extremely 
challenging even on high performance computing platforms, if not altogether impractical. There have been a few attempts to treat 
quasi-one-dimensional materials using Linear Combination of Atomic Orbitals (LCAO) based techniques [31–36]. However, such 
methods suffer from basis incompleteness and superposition errors [37–39], which can make it difficult to obtain systematically 
convergent and improvable results.

In view of these limitations of conventional methods, a series of recent contributions has explored the use of real space techniques 
to study quasi-one-dimensional materials and their natural deformation modes [20,30,40,41]. Specifically, this line of work incorpo-

rates the helical interaction potentials present in such systems using helical Bloch waves and employs higher order finite differences to 
discretize the single particle Schrödinger equation in helical coordinates. While this technique shows systematic convergence, and has 
enabled the exploration of various fascinating electromechanical properties, it also has a number of significant drawbacks. First, due 
to the curvilinearity of helical coordinates, the discretized Hamiltonian appearing in these calculations is necessarily non-Hermitian 
[42,43]. This complicates the process of numerical diagonalization and makes many of the standard iterative eigensolvers [44] un-

usable. Second, the discretized equations have a coordinate singularity along the system axis which restricts the use of the methods 
to tubular structures and prevents important nanomaterials such as nanowires and nanoribbons from being studied. The presence 
of the singularity also tends to ill condition the discretized Hamiltonian, which further restricts the applicability of the method to 
systems in which the atoms lie far enough away from the system axis (e.g. larger diameter nanotubes). Finally, while the finite 
difference approach does allow for the simulation of materials with twist (intrinsic or applied), the sparsity pattern of the discretized 
Hamiltonian worsens upon inclusion of twist, making simulations of such systems significantly more burdensome.

In this work we formulate and implement a novel computational technique that remedies all of the above issues and allows one to 
carry out systematic numerical solutions of the Schrödinger equation, as it applies to quasi-one-dimensional materials and structures. 
The technique presented here can be thought of as an analog of the classical plane-wave method, and is similar in spirit to the spectral 
scheme for clusters presented in [45]. Like the classical plane-wave method, a single parameter (the kinetic energy cutoff) dictates 
the overall quality of solution of our numerical scheme. We present a derivation of the basis functions of our method — called helical 
waves (or twisted waves) — as eigenfunctions of the Laplacian under suitable boundary conditions. We describe how helical waves 
may be used to discretize the symmetry adapted Schrödinger equation for quasi-one-dimensional materials, and how matrix-free 
iterative techniques can be used for diagonalization. A key feature of our technique is the handling of convolution sums through 
the use of fast basis transforms, and we describe in detail how these transforms are formulated and implemented. We also discuss 
various other computational aspects, including the choice of eigensolvers and preconditioners, and the handling of oscillatory radial 
integrals that appear in our method. We have implemented these techniques into a MATLAB [46] package called HelicES (Helical

Electronic Structure), which we use for carrying out demonstrative electronic structure calculations of various quasi-one-dimensional 
materials. We also present results related to the convergence, computational efficiency and accuracy properties of our method, while 
using finite difference, transfer matrix and plane-wave methods for reference data.

We remark that our technique has connections with methods presented in earlier work concerning electronic structure calculations 
in cylindrical geometries [47–51], but is more general in that the use of helical waves automatically allows both chiral (i.e., twisted) 
and achiral (i.e., untwisted) structures to be naturally handled. Additionally, some of these earlier studies have employed the strategy 
of setting up of the discretized Hamiltonian explicitly and then using direct diagonalization techniques, which scales in a significantly 
worse way (both in memory and computational time) compared to the transform based matrix-free strategies adopted by us. We also 
note in passing that the basis functions presented here appear to be scalar versions of twisted wave fields explored recently in the 
2

x-ray crystallography [52,53] and elastodynamics [54,55] literature.
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Fig. 1. Examples of the type of nanostructures that can be investigated using the computational framework presented in this work. Helical and cyclic symmetry 
parameters associated with the geometries of the structures are shown.

The rest of this paper is organized as follows. In Section 2, we specify the class of systems of interest to this work, formalize 
the relevant computational problem, and describe our discretization strategy. Numerical techniques and algorithms are presented in 
Section 3, following which we present results in Section 4. We conclude in Section 5 and also discuss the future outlook of the work. 
Miscellaneous derivations and computational details are presented in the Appendices.

2. Formulation

In what follows, 𝐞𝐗, 𝐞𝐘, 𝐞𝐙 will denote the standard orthonormal basis of ℝ3. Position vectors will be typically denoted using 
boldface lower case letters (e.g., 𝐩) and rotation matrices using boldface uppercase (e.g., 𝐐). The atomic unit system of 𝑚𝑒 = 1, ℏ =
1, 1

4𝜋𝜖0
= 1 will be used throughout the paper, unless otherwise mentioned. Cartesian and cylindrical coordinates will be typically 

denoted as (𝑥, 𝑦, 𝑧) and (𝑟, 𝜗, 𝑧) respectively. The × sign will be reserved for denoting dimensions of matrices (e.g. using 𝑀 × 𝑁 to 
denote the dimensions of a matrix with 𝑀 rows and 𝑁 columns), while ∗ will be used to explicitly denote multiplication by or in 
between scalars, vectors and matrices.

2.1. Description of physical system and computational problem

We consider a quasi-one-dimensional nanostructure of infinite extent aligned along 𝐞𝐙 (see Fig. 1). We assume the structure to be 
of limited extent along 𝐞𝐗 and 𝐞𝐘. Let the atoms of the structure have coordinates:

 = {𝐩1,𝐩2,𝐩3,⋯ ∶ 𝐩𝑖 ∈ℝ3} . (1)

Quasi-one-dimensional structures in their undeformed states, or while being subjected to natural deformation modes such as exten-

sion, compression or torsion, can often be described using helical (i.e., screw transformation) and cyclic symmetries [10,20,29,30]. 
Accordingly, we may identify a finite subset of atoms of the structure with coordinates:

 = {𝐫1, 𝐫2, 𝐫3,… , 𝐫𝑀 ∶ 𝐫𝑖 ∈ℝ3} , (2)

and a corresponding set of symmetry operations:

 =
{
Υ𝜁,𝜇 =

(
𝐑(2𝜋𝜁𝛼+𝜇Θ)| 𝜁𝜏𝐞𝐙) ∶ 𝜁 ∈ℤ, 𝜇 = 0,1,… ,𝔑− 1

}
, (3)

such that:

 =
⋃
𝜁∈ℤ

𝜇=0,1,…,𝔑−1

𝑀⋃
𝑖=1

𝐑(2𝜋𝜁𝛼+𝜇Θ)𝐫𝑖 + 𝜁𝜏𝐞𝐙 . (4)

Here, the Υ𝜁,𝜇 are symmetry operations of the structure — specifically, each Υ𝜁,𝜇 is an isometry whose action on an arbitrary point 
3

𝐱 ∈ℝ3 (denoted as Υ𝜁,𝜇◦𝐱) is to rotate it by the angle 2𝜋𝜁𝛼 + 𝜇Θ about 𝐞𝐙, while simultaneously translating it by 𝜇𝜏 about the same 
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axis. The natural number 𝔑 is related to cyclic symmetries in the nanostructure about the axis 𝐞𝐙, with Θ = 2𝜋∕𝔑 denoting the cyclic 
symmetry angle. The quantity 𝜏 is the pitch of the screw transformation part of Υ𝜁,𝜇 , the parameter 𝛼 takes values 0 ≤ 𝛼 < 1, and 
𝛽 = 2𝜋𝛼∕𝜏 captures the rate of twist (imposed or intrinsic) in the structure. The case 𝛼 = 0 usually represents achiral or untwisted 
structures (see Fig. 1).

The electronic properties of a quasi-one-dimensional material under study can be investigated by calculating the spectrum of the 
single particle Schrödinger operator:

ℌ = −1
2
Δ+ 𝑉 (𝐱) , (5)

associated with the system. Determination of the spectrum in an efficient manner, especially for realistic quasi-one-dimensional 
nanomaterials serves as the primary computational problem of interest in this work. Here, 𝑉 (𝐱) represents the “effective potential” as 
perceived by the electrons. The potential can be computed through self-consistent means (for example, as part of Density Functional 
Theory calculations [20,30]), or through the use of empirical pseudopotentials [56,57], as done here. Due to the presence of global 
structural symmetries, the potential is expected to obey:

𝑉 (𝐱) = 𝑉 (Υ𝜁,𝜇 ◦𝐱) ,∀Υ𝜁,𝜇 ∈  . (6)

As a consequence of the quasi-one-dimensional nature of the system, and the above symmetry conditions, the eigenstates of the 
Hamiltonian can be characterized in terms of Helical Bloch waves [29,30]. Specifically, solutions of the Schrödinger equation:(

− 1
2
Δ+ 𝑉 (𝐱)

)
𝜓 = 𝜆𝜓 , (7)

can be labeled using band indices 𝑗 ∈ ℕ, and symmetry adapted quantum numbers 𝜂 ∈
[
−1

2 , 12

)
, 𝜈 ∈ {0, 1, 2, … , 𝔑 − 1}. Moreover, 

these solutions obey the following condition for any symmetry operation Υ𝜁,𝜇 ∈ :

𝜓𝑗 (Υ𝜁,𝜇 ◦𝐱;𝜂, 𝜈) = 𝑒
−2𝜋𝑖

(
𝜁𝜂+ 𝜇𝜈

𝔑

)
𝜓𝑗 (𝐱;𝜂, 𝜈) . (8)

The above relation can be used to reduce the computational problem of determining the eigenstates of the Schrödinger operator over 
all of space, to a fundamental domain or symmetry-adapted unit cell.

Since the structures considered here have limited spatial extent in the 𝐞𝐗 − 𝐞𝐘 plane, so does the computational unit cell. We 
denote the maximum radial coordinate of the points in the computational domain as 𝑅. Then, this region of space (see Fig. 3) can be 
parametrized in cylindrical coordinates as:

 =
{
(𝑟, 𝜗, 𝑧) ∶ 0 ≤ 𝑟 ≤ 𝑅,

2𝜋𝛼𝑧

𝜏
≤ 𝜗 ≤ 2𝜋𝛼𝑧

𝜏
+Θ,0 ≤ 𝑧 ≤ 𝜏

}
. (9)

Due to the decay of the wavefunctions in the radial direction [58,59], it is often appropriate to enforce Dirichlet boundary conditions 
on the surface 𝑟 = 𝑅, as done here. In practice, the value of 𝑅 can be chosen so as to ensure a sufficient amount of vacuum exists 
between the structure under study and this lateral boundary surface [30,40].

2.2. The helical coordinate system and transformation of Schrödinger’s equation

For computational purposes, it is useful to utilize a coordinate system that describes the computational domain , and the quasi-

one-dimensional system’s symmetries more naturally. To this end, we employ helical coordinates [29,60,61] in this work (Fig. 2). For 
a point 𝐩 ∈ ℝ3 with Cartesian coordinates 

(
𝑥𝐩, 𝑦𝐩, 𝑧𝐩

)
, cylindrical coordinates 

(
𝑟𝐩, 𝜗𝐩, 𝑧𝐩

)
, and helical coordinates 

(
𝜃1 𝐩, 𝜃2 𝐩, 𝑟𝐩

)
, the 

following relations hold:

𝑟𝐩 =
√

𝑥2
𝐩 + 𝑦2𝐩 , 𝜃1 𝐩 =

𝑧𝐩

𝜏
,

𝜃2 𝐩 =
1
2𝜋

arctan2
(
𝑦𝐩, 𝑥𝐩

)
− 𝛼

𝑧𝐩

𝜏
=

𝜗𝐩

2𝜋
− 𝛼

𝑧𝐩

𝜏
.

(10)

Regardless of the amount of twist or cyclic symmetries present in the system, the fundamental domain  (eq. (9)) can be conveniently 
expressed as a cuboid in helical coordinates, i.e.,

 =
{
(𝜃1, 𝜃2, 𝑟) ∶ 0 ≤ 𝜃1 ≤ 1,0 ≤ 𝜃2 ≤ 1

𝔑
,0 ≤ 𝑟 ≤ 𝑅

}
. (11)

Thus, it is easier to setup a computational mesh over the fundamental domain using helical coordinates. Moreover, the action of 
the symmetry operations Υ𝜁,𝜇 ∈  is to simply result in translations of the helical coordinates: if 𝐩 ∈ ℝ3 has helical coordinates (
𝜃1 𝐩, 𝜃2 𝐩, 𝑟𝐩

)
, then Υ𝜁,𝜇◦𝐩 has helical coordinates 

(
𝜃1 𝐩 + 𝜁, 𝜃2 𝐩 +

𝜇

𝔑 , 𝑟𝐩

)
. In particular, this implies that a function that is group in-

variant may be represented over the computational domain by means of periodic boundary conditions along the 𝜃1 and 𝜃2 directions. 
Next, we formulate the governing equations, i.e., Helical-Bloch wave form of Schrodinger’s equation over the fundamental domain 
4

using helical coordinates. To this end, we first note that:
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Fig. 2. The helical coordinate system represented as constant surfaces of the parameters 𝑟, 𝜃1 , 𝜃2 (the twist parameter 𝛼 is nonzero here).

Fig. 3. The computational mesh represented in simulation space using helical coordinates (left), and physical space using Cartesian coordinates (right). The slanted 
walls of the fundamental domain  in physical space (right) arise due to possibly arbitrary values of twist associated with the system.

−1
2
Δ𝜓𝑗 + 𝑉 𝜓𝑗 = −1

2

[(
𝜓𝑗

)
𝑟𝑟
+ 1

𝑟

(
𝜓𝑗

)
𝑟
+ 1

𝜏2

(
𝜓𝑗

)
𝜃1𝜃1

− 2𝛼
𝜏2

𝜓𝜃1𝜃2

+ 1
4𝜋2

(
1
𝑟2

+ 4𝜋2𝛼2

𝜏2

)(
𝜓𝑗

)
𝜃2𝜃2

]
+ 𝑉 𝜓𝑗 = 𝜆𝑗𝜓𝑗

(12)

Then, we recast eq. (8) to imply that the wavefunctions admit the following Helical Bloch ansatz [20]:

𝜓𝑗 (𝜃1, 𝜃2, 𝑟;𝜂, 𝜈) = 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2)𝜙𝑗 (𝜃1, 𝜃2, 𝑟;𝜂, 𝜈) . (13)

Here, 𝜂 ∈
[
−1

2 , 12

)
, 𝜈 ∈ {0, 1, 2, … , 𝔑 − 1}, and the auxiliary functions 𝜙𝑗 (𝜃1, 𝜃2, 𝑟; 𝜂, 𝜈) are group invariant. In particular, this implies 

that these functions obey the conditions:

𝜙𝑗 (𝜃1, 𝜃2, 𝑟;𝜂, 𝜈) = 𝜙𝑗 (𝜃1 + 1, 𝜃2, 𝑟;𝜂, 𝜈)

𝜙𝑗 (𝜃1, 𝜃2, 𝑟;𝜂, 𝜈) = 𝜙𝑗 (𝜃1, 𝜃2 +
1
𝔑

, 𝑟;𝜂, 𝜈) .
(14)

Substituting eq. (13) into the Schrödinger equation above (eq. (12)) and after some algebra (Appendix A), we arrive at:[
− 1

2
Δ𝜙𝑗 −

(
2𝜋2

𝜏2

{
𝜈𝛼 (2𝜂 − 𝜈𝛼) − 𝜂2

}
− 𝜈2

2𝑟2

)
𝜙𝑗 −

2𝑖𝜋
𝜏2

(𝜈𝛼 − 𝜂)
(
𝜙𝑗

)
𝜃1

−2𝑖𝜋
[

𝛼

𝜏2
(𝜂 − 𝜈𝛼) − 𝜈

4𝜋2𝑟2

](
𝜙𝑗

)
𝜃2
+ 𝑉 𝜙𝑗

]
= 𝜆𝑗𝜙𝑗 .

(15)

This serves as the governing equation for the computational method in this work. It needs to be discretized and solved over the 
fundamental domain along with the enforcement of periodic boundary conditions in the 𝜃1 and 𝜃2 directions (eq. (14)), and the 
imposition of wavefunction decay in the radial direction, i.e.:

𝜙𝑗 (𝜃1, 𝜃2, 𝑟 = 𝑅;𝜂, 𝜈) = 0 . (16)

Note that due to eq. (6), the effective potential in helical coordinates, 𝑉 (𝜃1, 𝜃2, 𝑟), also obeys conditions of the form outlined in 
5

eq. (14), although it is generically not expected to obey the decay conditions similar to eq. (16).
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2.3. Basis set and discretization

We now discuss discretization of the governing equations using helical waves. The derivation of these basis functions as symmetry 
adapted eigenfunctions of the Laplacian is presented in Appendix B. In what follows, we will usually suppress the dependence of 
𝜙𝑗 (𝜃1, 𝜃2, 𝑟; 𝜂, 𝜈) on the band index (𝑗) for the sake of simplicity of notation. Denoting the basis functions as 𝐹𝑚,𝑛,𝑘

(
𝜃1, 𝜃2, 𝑟

)
in helical 

coordinates, we write:

𝜙
(
𝜃1, 𝜃2, 𝑟

)
=

∑
(𝑚,𝑛,𝑘)∈Γ

𝜙̂𝑚,𝑛,𝑘 𝐹𝑚,𝑛,𝑘

(
𝜃1, 𝜃2, 𝑟

)
=

∑
(𝑚,𝑛,𝑘)∈Γ

𝜙̂𝑚,𝑛,𝑘 𝑐𝑚,𝑛,𝑘 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2) 𝐽𝑛𝔑

(
𝑏𝑛𝔑

𝑘
𝑟

𝑅

)
. (17)

Here, 𝜙̂𝑚,𝑛,𝑘 are the expansion coefficients, 𝐽𝑛𝔑(⋅) denotes Bessel functions of the first kind of order 𝑛𝔑, while 𝑏𝑛𝔑
𝑘

denote the zeros of 
the Bessel functions. The basis function normalization constants 𝑐𝑚,𝑛,𝑘 are:

𝑐𝑚,𝑛,𝑘 =
√

𝔑
𝜋𝜏

1
𝑅𝐽𝑛𝔑+1

(
𝑏𝑛𝔑

𝑘

) . (18)

The set Γ denotes triplets of integers (𝑚, 𝑛, 𝑘) such that 𝑚 ∈ [−𝑀max, 𝑀max], 𝑛 ∈ [−𝑁max, 𝑁max] and 𝑘 ∈ [1, 𝐾max]. The basis set size 
is  = (2𝑀max + 1) ∗ (2𝑁max + 1) ∗ 𝐾max, i.e., it grows as (𝑀max𝑁max𝐾max) in terms of the discretization sizes along the 𝜃1, 𝜃2, 𝑟
directions. By design, the basis functions are orthonormal, i.e.:

⟨𝐹𝑚,𝑛,𝑘, 𝐹𝑚′ ,𝑛′ ,𝑘′ ⟩L2() = 𝛿𝑚,𝑚′𝛿𝑛,𝑛′𝛿𝑘,𝑘′ , (19)

and they satisfy (see Appendix B):

−Δ𝐹𝑚,𝑛,𝑘 = 𝜆0
𝑚,𝑛,𝑘

𝐹𝑚,𝑛,𝑘 , 𝜆0
𝑚,𝑛,𝑘

=

(
𝑏𝑛𝔑

𝑘

𝑅

)2

+
||||2𝜋𝜏 (𝑚− 𝛼𝑛𝔑)

||||2 . (20)

The above condition implies that the kinetic energy part of the single particle Schrödinger operator is diagonalized in this basis.

Consistent with the literature, we will refer to the representation of a function in terms of its expansion coefficients (i.e., 𝜙̂𝑚,𝑛,𝑘

in the above) as its reciprocal space representation. Furthermore, we will refer to the representation of the function in terms of its 
values on a discrete set of grid points as its real space representation. If the basis functions are also available on these same grid points, 
the real and reciprocal space representations of the function can be connected via eq. (17). In Appendix C we demonstrate how the 
gradients of quantities expressed via eq. (17) may be evaluated.

For common systems of interest, the number of basis functions required for discretizing the governing equations can number in 
the tens or hundreds of thousands (See Section 4). Thus, it can become infeasible to explicitly store the discretized Hamiltonian. 
This scenario is also encountered in the classical plane-wave method for bulk systems [27,28], and can be addressed by working 
with the discretized Hamiltonian implicitly, and using iterative, matrix-free diagonalization techniques to compute the eigenstates 
[44,62]. For adopting such strategies, we need to be able to compute action of the Hamiltonian on an arbitrary vector, such as the 
wavefunction, as represented in our basis set. To this end, we consider a vector 𝜙 ∈ Span

{
𝐹𝑚,𝑛,𝑘 ∶ (𝑚,𝑛, 𝑘) ∈ Γ

}
, substitute eq. (17)

into eq. (15), and use eq. (20), to arrive at:(
−1
2
Δ+ 𝑉

)
𝜙 = 1

2
∑
Γ

𝜙̂𝑚,𝑛,𝑘𝜆0
𝑚,𝑛,𝑘

𝐹𝑚,𝑛,𝑘 − 𝑎 (𝛼, 𝜏, 𝜂, 𝜈)𝜙− 𝑏 (𝛼, 𝜏, 𝜂, 𝜈)𝜙𝜃1

−𝑐 (𝛼, 𝜏, 𝜂, 𝜈)𝜙𝜃2
+ 𝜈2

2𝑟2
𝜙+ 𝑖𝜈

2𝜋𝑟2
𝜙𝜃2

+ 𝑉 𝜙 = 𝜆𝜙 , (21)

which further simplifies to:

1
2
∑
Γ

𝜙̂𝑚,𝑛,𝑘𝜆0
𝑚,𝑛,𝑘

𝐹𝑚,𝑛,𝑘 − 𝑎 (𝛼, 𝜏, 𝜂, 𝜈)
∑
Γ

𝜙̂𝑚,𝑛,𝑘𝑓𝑚,𝑛,𝑘

− 𝑏 (𝛼, 𝜏, 𝜂, 𝜈)
∑
Γ

𝜙̂𝑚,𝑛,𝑘 (𝑖2𝜋𝑚)𝐹𝑚,𝑛,𝑘 − 𝑐 (𝛼, 𝜏, 𝜂, 𝜈)
∑
Γ

𝜙̂𝑚,𝑛,𝑘 (𝑖2𝜋𝑛𝔑)𝐹𝑚,𝑛,𝑘

+ 𝜈2

2
∑
Γ

𝜙̂𝑚,𝑛,𝑘

𝐹𝑚,𝑛,𝑘

𝑟2
+ 𝑖𝜈

2𝜋
∑
Γ

𝜙̂𝑚,𝑛,𝑘

(
𝑖2𝜋𝑛𝔑

𝑟2

)
𝐹𝑚,𝑛,𝑘 + 𝑉

(
𝑟, 𝜃1, 𝜃2

)∑
Γ

𝜙̂𝑚,𝑛,𝑘𝐹𝑚,𝑛,𝑘

= 𝜆
∑
Γ

𝜙̂𝑚,𝑛,𝑘𝐹𝑚,𝑛,𝑘 . (22)

The constants 𝑎, 𝑏, 𝑐 in the above are as follows:

𝑎 (𝛼, 𝜏, 𝜂, 𝜈) = 2𝜋2

𝜏2

{
𝜈𝛼 (2𝜂 − 𝜈𝛼) − 𝜂2

}
,

(23)
6

𝑏 (𝛼, 𝜏, 𝜂, 𝜈) = 2𝑖𝜋
𝜏2

(𝜈𝛼 − 𝜂) , 𝑐 (𝛼, 𝜏, 𝜂, 𝜈) = 2𝑖𝜋𝛼

𝜏2
(𝜂 − 𝜈𝛼) .
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The action of the Hamiltonian on the vector 𝜙 is simply the left hand side of eq. (22) above. We observe that due to orthonormality 
of the basis set, the first four terms on the left hand side are easily handled in reciprocal space. Specifically, the second term is simply 
a scaling of the input vector 𝜙 with the factor 𝑎 (𝛼, 𝜏, 𝜂, 𝜈), while the other three terms can be evaluated as element-wise product 
operations (Matlab operation . ∗). Thus, these terms can all be evaluated at a cost that scales linearly with the basis set size. The 
last term on the left hand side is associated with action of the effective potential 𝑉 (𝐱) on the wavefunction vector. If the expansion 
coefficients of the potential are available as:

𝑉 (𝜃1, 𝜃2, 𝑟) =
∑

(𝑚̃,𝑛̃,𝑘̃)∈Γ
𝑉𝑚̃,𝑛̃,𝑘̃ 𝐹𝑚̃,𝑛̃,𝑘̃(𝜃1, 𝜃2, 𝑟) , (24)

then the expansion coefficients of 𝑉 (𝐱)𝜙(𝐱) can be computed as:⟨
𝑉 (𝜃1, 𝜃2, 𝑟)𝜙(𝜃1, 𝜃2, 𝑟) , 𝐹𝑚′ ,𝑛′ ,𝑘′ (𝜃1, 𝜃2, 𝑟)

⟩
L2()

=

⟨(∑
Γ

𝑉𝑚̃,𝑛̃,𝑘̃𝐹𝑚̃,𝑛̃,𝑘̃(𝜃1, 𝜃2, 𝑟)
)(∑

Γ
𝜙̂𝑚,𝑛,𝑘𝐹𝑚,𝑛,𝑘(𝜃1, 𝜃2, 𝑟)

)
, 𝐹𝑚′ ,𝑛′ ,𝑘′ (𝜃1, 𝜃2, 𝑟)

⟩
L2()

=

⟨(∑
Γ

∑
Γ

𝑉𝑚̃,𝑛̃,𝑘̃ 𝜙̂𝑚,𝑛,𝑘 𝐹𝑚̃,𝑛̃,𝑘̃(𝜃1, 𝜃2, 𝑟)𝐹𝑚,𝑛,𝑘(𝜃1, 𝜃2, 𝑟)
)

, 𝐹𝑚′ ,𝑛′ ,𝑘′ (𝜃1, 𝜃2, 𝑟)

⟩
L2()

=
∑
Γ

∑
Γ

𝑉𝑚̃,𝑛̃,𝑘̃ 𝜙̂𝑚,𝑛,𝑘

⟨
𝐹𝑚̃,𝑛̃,𝑘̃ 𝐹𝑚,𝑛,𝑘 , 𝐹𝑚′ ,𝑛′ ,𝑘′

⟩
L2() . (25)

There are two problems with the above evaluation strategy. First, the time complexity of the procedure scales in a cubic manner 
with respect to the basis set size, i.e., 𝑂(𝑀3

max𝑁3
max𝐾

3
max). Moreover, if the coupling coefficients:

⟨
𝐹𝑚̃,𝑛̃,𝑘̃ 𝐹𝑚,𝑛,𝑘 , 𝐹𝑚′ ,𝑛′ ,𝑘′

⟩
L2() = 𝑐𝑚̃,𝑛̃,𝑘̃𝑐𝑚,𝑛,𝑘𝑐∗

𝑚′ ,𝑛′ ,𝑘′

1

∫
0

𝑒𝑖2𝜋(𝑚+𝑚̃−𝑚′)𝜃1 𝑑𝜃1

×

1
𝔑

∫
0

𝑒𝑖2𝜋𝔑(𝑛+𝑛̃−𝑛′)𝜃2 𝑑𝜃2

𝑅

∫
0

𝐽𝑛𝔑

(
𝑏𝑛𝔑

𝑘
𝑟

𝑅

)
𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘′
𝑟

𝑅

)
𝐽𝑛̃𝔑

(
𝑏𝑛̃𝔑

𝑘̃
𝑟

𝑅

)
2𝜋𝜏𝑟𝑑𝑟 , (26)

are to be calculated and stored ahead of time for easier evaluation of eq. (25), the memory complexity of the procedure would also 
scale cubically with the basis set size. By making use of the fact that the coupling coefficients are non-zero only for 𝑚 + 𝑚̃ = 𝑚′ and 
𝑛 + 𝑛̃ = 𝑛′, their evaluation, storage and application to eq. (25), can be somewhat simplified. Despite this, the overall complexity still 
continues to be cubic in the basis set size in both memory and time. Second, the potential 𝑉 (𝐱) is generally not expected to be equal 
to zero at 𝑟 = 𝑅 and may be slowly decaying due to long range electrostatics effects. Hence, it is inappropriate to express this quantity 
in terms of helical waves obeying Dirichlet boundary conditions.

Both of the above issues can be remedied by adopting a pseudospectral evaluation strategy [45,63–66], as we now describe. This 
is related to the observation that if 𝑉 (𝐱) and 𝜙(𝐱) are available in real space, as functions sampled at a common set of grid points, 
the product 𝜒(𝐱) = 𝑉 (𝐱)𝜙(𝐱) can be evaluated with a cost proportional to the size of the grid. Thereafter, the function 𝜒(𝐱) can be 
directly expanded in terms of helical waves to yield:

𝜒𝑚′ ,𝑛′ ,𝑘′ =
⟨
𝑉 (𝜃1, 𝜃2, 𝑟)𝜙(𝜃1, 𝜃2, 𝑟) , 𝑓𝑚′ ,𝑛′ ,𝑘′ (𝜃1, 𝜃2, 𝑟)

⟩
L2()

. (27)

Since 𝜒(𝐱) obeys Dirichlet boundary conditions and inherits all symmetries of the group , its expansion using helical waves is 
appropriate. To put this strategy into practice however, we need access to fast basis transforms so that functions expressed in 
reciprocal space (i.e., as expansion coefficients) and real space (i.e., on the grid), may be readily interconverted. We describe the 
formulation and implementation of such transform routines in Sections 3.4.1 and 3.4.2. The overall computational cost of this 
strategy is the sum total of the costs of the forward and inverse transforms, and the cost of carrying out the real space product. 
Theoretically, the transforms described here scale in a manner that is slightly worse than the basis set size. However, as we show 
later, in practice they scale more favorably, in a sub-linear manner (see Fig. 4). Furthermore, the real space grid size is usually a 
constant multiple of the basis set size, leading to the overall cost of the pseudospectral method scaling in a manner that is close to 
the first power of this quantity (=(𝑀max𝑁max𝐾2

max)). The memory complexity is also reduced and scales as the basis set size itself, 
i.e., (𝑀max𝑁max𝐾max).

Finally, we discuss the evaluation of the fifth and the sixth terms on the left hand side of eq. (22). The fifth term, i.e.,

𝓁(𝜃1, 𝜃2, 𝑟) =
𝜈2

2
∑
Γ

𝜙̂𝑚,𝑛,𝑘

𝐹𝑚,𝑛,𝑘

𝑟2
, (28)

satisfies 𝓁(𝜃1, 𝜃2, 𝑟 = 𝑅) = 0 and invariance under , since it is a finite linear combination of terms which individually obey these 
7

conditions. Thus, the expansion coefficients are:
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Fig. 4. Variation of the normalized time for basis transforms plotted against the basis set size. Both axes are logarithmic. Straight lines were fit using the average of 
the forward and inverse transform times in each case.

𝓁𝑚′ ,𝑛′ ,𝑘′ =
⟨
𝓁(𝜃1, 𝜃2, 𝑟) , 𝐹𝑚′ ,𝑛′ ,𝑘′ (𝜃1, 𝜃2, 𝑟)

⟩
L2()

= 𝜈2

2
∑
Γ

𝜙̂𝑚,𝑛,𝑘

1

∫
0

1
𝔑

∫
0

𝑅

∫
0

𝐹𝑚,𝑛,𝑘𝐹 ∗
𝑚′ ,𝑛′ ,𝑘′

𝑟2
2𝜋𝜏𝑟𝑑𝑟𝑑𝜃2 𝑑𝜃1

= 𝜈2𝜋𝜏
∑
Γ

𝜙̂𝑚,𝑛,𝑘𝑐𝑚,𝑛,𝑘𝑐∗
𝑚′ ,𝑛′ ,𝑘′

[ 1

∫
0

𝑒𝑖2𝜋(𝑚−𝑚′)𝜃1𝑑𝜃1×

1
𝔑

∫
0

𝑒𝑖2𝜋𝔑(𝑛−𝑛′)𝜃2𝑑𝜃2

𝑅

∫
0

𝐽𝑛𝔑

(
𝑏𝑛𝔑
𝑘

𝑟

𝑅

)
𝐽𝑛′𝔑

(
𝑏𝑛′𝔑
𝑘′

𝑟

𝑅

)
𝑟2

𝑟𝑑𝑟

]

= 𝜈2

𝑅2

𝐾max∑
𝑘=1

𝜙̂𝑚′ ,𝑛′ ,𝑘
1

𝐽𝑛′𝔑+1
(
𝑏𝑛′𝔑

𝑘

)
𝐽𝑛′𝔑+1

(
𝑏𝑛′𝔑

𝑘′

) 𝑅

∫
0

𝐽𝑛′𝔑

(
𝑏𝑛′𝔑
𝑘

𝑟

𝑅

)
𝐽𝑛′𝔑

(
𝑏𝑛′𝔑
𝑘′

𝑟

𝑅

)
𝑟2

𝑟𝑑𝑟 . (29)

In the above, we have made use of the orthonormality of the complex exponentials in the 𝜃1 and 𝜃2 directions. We may rewrite 
eq. (29) as:

𝓁𝑚′ ,𝑛′ ,𝑘′ =
𝜈2

𝑅2

𝐾max∑
𝑘=1

𝜙̂𝑚′ ,𝑛′ ,𝑘 (𝑛′, 𝑘, 𝑘′) , (30)

with:

(𝑛′, 𝑘, 𝑘′) = 1

𝐽𝑛′𝔑+1
(
𝑏𝑛′𝔑

𝑘

)
𝐽𝑛′𝔑+1

(
𝑏𝑛′𝔑

𝑘′

) 1

∫
0

𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘
𝑞
)

𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘′
𝑞
)

𝑞2
𝑞 𝑑𝑞 . (31)

Thus, if the quantities (𝑛′, 𝑘, 𝑘′) are known ahead of time, the coefficients 𝓁𝑚′ ,𝑛′ ,𝑘′ can be readily evaluated at a cost of 
(𝑀max𝑁max𝐾

2
max), i.e., quite close to the overall basis set size, and similar in computational complexity to the evaluation of the 

potential term. Since (𝑛′, 𝑘, 𝑘′) is problem independent (e.g., it has no dependence on 𝑅, 𝛼, 𝜏 or the potential 𝑉 (𝐱)), we may evaluate 
and store it as a table for a large range of values of 𝑛, 𝑘 and 𝑘′. During program execution, this table of values may be loaded into 
memory, and each 𝓁𝑚′ ,𝑛′ ,𝑘′ can be evaluated as a vector dot product (eq. (30)), after accessing the necessary values of (𝑛′, 𝑘, 𝑘′). As 
for the evaluation of the (𝑛′, 𝑘, 𝑘′) values themselves, we may use the recurrence relation [67]:

2𝜅
𝑞

𝐽𝜅 (𝑞) = 𝐽𝜅−1(𝑞) + 𝐽𝜅+1(𝑞) , (32)

to rid the integrand in eq. (31) of its denominator, and obtain a pair of oscillatory integrals. We may then compute these by using 
Gauss-Jacobi quadrature as outlined in eq. Appendix D.

In an analogous manner, the sixth term on the left hand side of eq. (22), i.e.,

𝑖𝜈

2𝜋
∑

𝜙̂𝑚,𝑛,𝑘 (𝑖2𝜋𝑛𝔑)

1

∫

1
𝔑

∫
𝑅

∫
𝐹𝑚,𝑛,𝑘𝐹 ∗

𝑚′ ,𝑛′ ,𝑘

𝑟2
2𝜋𝜏𝑟𝑑𝑟𝑑𝜃2 𝑑𝜃1 , (33)
8

Γ 0 0 0
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can be simplified to:

= 𝑖𝜈

𝜋𝑅2

𝐾max∑
𝑘=1

(
𝜙̂𝑚′ ,𝑛′ ,𝑘 ∗ 𝑖2𝜋𝑛′𝔑

)(𝑛′, 𝑘, 𝑘′) . (34)

With the quantities (𝑛′, 𝑘, 𝑘′) available, the above can be evaluated in a manner similar to the evaluation of the fifth term, at a 
computational cost of (𝑀max𝑁max𝐾

2
max). The key difference is that instead of the vector {𝜙̂𝑚,𝑛,𝑘}(𝑚,𝑛,𝑘)∈Γ, we need to consider an 

alternate one with entries {𝑖2𝜋𝑛′𝔑𝜙̂𝑚,𝑛,𝑘}(𝑚,𝑛,𝑘)∈Γ. However, this modified vector is already available as part of evaluation of the 
fourth therm on the left hand side of eq. (22), and therefore, it can be reused.

3. Numerical implementation

We have implemented the above computational strategies into a MATLAB [46] package called HelicES (Helical Electronic

Structure). To ensure efficiency, our code heavily relies on vectorization features of MATLAB. Various details of our implemen-

tation are as follows.

3.1. Wave function storage: reciprocal and real space considerations

For any quantity in reciprocal space, there are three indices 𝑚, 𝑛, 𝑘 associated with each expansion coefficient, making the collec-

tion of coefficients a three-dimensional object of dimensions (2𝑀max + 1) × (2𝑁max + 1) × 𝐾max = . However, it is easier for linear 
algebra operations to have these coefficients stacked up as vector in ℂ. To achieve this, we adopt the following mapping between 
(𝑚, 𝑛, 𝑘) ∈ Γ and the linear index 𝔦 ∈ {1, 2, … , }:

𝔦(𝑚,𝑛, 𝑘) = (𝑚+𝑀max) ∗ (2𝑁max + 1) ∗ 𝐾max + (𝑛+𝑁max) ∗ 𝐾max + 𝑘 . (35)

With this, a collection of 𝑁s wavefunctions can be stored as a complex matrix of dimensions  ×𝑁s.

For real space representation, the number of grid points to be chosen along each helical coordinate 𝜃1, 𝜃2 is dictated by the 
accuracy of the basis transforms (see Section 3.4). We choose to work with Fourier nodes along the 𝜃1 and 𝜃2 directions and denote 
the corresponding number of grid points as 𝑁𝜃1

and 𝑁𝜃2
respectively. Along the radial direction, we choose 𝑁𝑟 Gauss-Jacobi nodes 

[68] over the interval [0, 𝑅]. This has the advantage that the coordinate singularity at the origin is automatically avoided. In order 
to accommodate non-linearities and to reduce aliasing errors [45,69], we typically choose 𝑁𝜃1

= 4 ∗ 𝑀max + 1, 𝑁𝜃2
= 4 ∗ 𝑁max + 1

and 𝑁𝑟 = 4 ∗ 𝐾max. These choices generally allow transforms to be evaluated accurately up to machine precision. With this setup, 
quantities such as the wavefunction are available in real space over a three-dimensional grid (i.e., the tensor product grid resulting 
from the one-dimensional grids along the individual coordinate directions), and each grid point is indexed via i ∈ {1, 2, … , 𝑁𝜃1

}, 
j ∈ {1, 2, … , 𝑁𝜃2

} and k ∈ {1, 2, … , 𝑁𝑟}. For storage, we stack this three dimensional representation into a complex column vector of 
size 𝑁𝜃1

∗ 𝑁𝜃2
∗ 𝑁𝑟, for which we use the following ordering:

𝔧(𝗂, 𝗃, 𝗄) = (𝗂− 1) ∗ 𝑁𝑟 ∗ 𝑁𝜃2
+ (𝗃− 1) ∗ 𝑁𝑟 + 𝗄 . (36)

Since the memory requirement for storage of each wavefunction in real space is much higher than storing it in reciprocal space, we 
typically avoid storing real space versions of all 𝑁s wave functions simultaneously.

3.2. Imposition of kinetic energy cutoff

In conventional plane-wave calculations, it is common to specify a kinetic energy cutoff, i.e., a limit on the 𝐻1 Sobolev norm of the 
plane-waves to be used for discretization [28,70]. Once a suitable periodic unit cell has been identified, this criterion automatically 
provides a recipe for calculating the number of planewaves along each of the Cartesian axes, and in turn, the dimensions of the 
underlying real space grid to be used for Fast Fourier Transforms (FFTs). In a similar vein, we may wish to retain only helical waves 
with kinetic energies below a pre-specified cutoff in our calculation, since this has the advantage that the basis set limits 𝑀max, 
𝑁max, and 𝐾max get specified automatically in proportion to the computational domain’s geometry parameters. At the gamma point 
(𝜂 = 0, 𝜈 = 0) for example, the kinetic energy cutoff criterion requires that all helical waves 𝑓𝑚,𝑛,𝑘, with 𝑚, 𝑛, 𝑘 values satisfying:

1
2

𝜆0
𝑚,𝑛,𝑘

= 1
2

[(
𝑏𝑛𝔑

𝑘

𝑅

)2

+
||||2𝜋𝜏 (𝑚− 𝛼𝑛𝔑)

||||2
]
≤ 𝐸cut , (37)

be included in our calculations. In our implementation, we first determine the largest absolute values of integers 𝑚, 𝑛 and the largest 
natural number 𝑘 consistent with eq. (37). We set the basis set limits 𝑀max, 𝑁max, and 𝐾max accordingly. The real space grids used for 
carrying out fast transforms (described below) are chosen based on these quantities. Within these (2𝑀max + 1) ∗ (2𝑁max + 1) ∗ 𝐾max

helical waves, however, not every combination of 𝑚, 𝑛, 𝑘 would satisfy the kinetic energy criterion. To remedy this, we create a 
masking vector to exclusively retain helical waves which satisfy eq. (37), in various operations of interest (such as the Hamiltonian 
times wavefunction products). Based on the linear ordering for reciprocal space storage outlined in eq. (35), we may express the 
9

masking vector as:
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𝔦(𝑚,𝑛,𝑘) = 1, for
1
2

𝜆0
𝑚,𝑛,𝑘

≤ 𝐸cut

= 0, otherwise. (38)

Element-wise multiplication of a given vector with the masking vector results in only kinetic energy limited helical waves being 
retained in the calculation. We implement the above strategy at each 𝜂, 𝜈 point (with the expression for the kinetic energy modified 
appropriately) to impose the kinetic energy cutoff in HelicES.

3.3. 𝜂-Space discretization and parallelization

As described earlier, to obtain the helical Bloch states (eq. (8)), i.e., solutions to the single electron problem with a symmetry 
adapted potential (eq. (6)), the single electron Hamiltonian has to be diagonalized for every 𝜂 ∈ [− 1

2 , 12 ) and 𝜈 ∈ {0, 1, 2, … , 𝔑− 1}. To 
make this calculation feasible, we sample 𝜂 over a discrete set {𝜂𝑏}

𝑁𝜂

𝑏=1 ⊂ [− 1
2 , 12 ). The specific choice of the values 𝜂𝑏 is based on the 

Monkhorst-Pack scheme [71]. This procedure akin to “k-point sampling” in conventional periodic codes [27]. With this choice, the 
Hamiltonian needs to be diagonalized at 𝑁 = 𝑁𝜂 ×𝔑 points, and integrals in 𝜂 can be calculated via quadrature:

1
2

∫
− 1

2

𝑝(𝜂)𝑑𝜂 ≈
𝑁𝜂∑
𝑏=1

𝑤𝑏 𝑝(𝜂𝑏) . (39)

Here, {𝑤𝑏}
𝑁𝜂

𝑏=1 are the Monkhorst-Pack quadrature weights and are uniformly equal to 1∕𝑁𝜂 . Integrals of the above kind appear, for 
example, while computing the electronic band energy, or the electron density from helical Bloch states [20,30].

If the single electron Hamiltonian does not include magnetic fields — as is the case here, time reversal symmetry allows further 
reduction in the number of 𝜂, 𝜈 points at which the Hamiltonian has to be diagonalized [40,72]. Specifically, it holds that for any 
𝜂 ∈ [− 1

2 , 12 ) the helical Bloch states and the associated electronic bands obey:

𝜓𝑗 (𝐱;𝜂, 𝜈) = 𝜓𝑗 (𝐱;−𝜂,𝔑− 𝜈)

𝜆𝑗 (𝜂, 𝜈) = 𝜆𝑗 (−𝜂,𝔑− 𝜈)

⎫⎪⎬⎪⎭ for 𝜈 ∈ {0,1,2,… ,𝔑− 1} , (40)

and:

𝜓𝑗 (𝐱;𝜂,0) = 𝜓𝑗 (𝐱;−𝜂,0)

𝜆𝑗 (𝜂,0) = 𝜆𝑗 (−𝜂,0)

⎫⎪⎬⎪⎭ for 𝜈 = 0 . (41)

Overall, this reduces the number of discrete points in reciprocal space by a factor of 2.

Since the diagonalization problem arising from distinct sets of 𝜂, 𝜈 values are independent of one another, they can be dealt with 
in an embarrassingly parallel manner. In our implementation, we have used MATLAB’s Parallel Computing Toolbox (specifically, the 
parfor function) to carry out this parallelization.

3.4. Fast basis transforms

Since our strategy for carrying out Hamiltonian matrix-vector products involves fast basis transforms, we now elaborate on various 
aspects of the implementation of such operations within the HelicES code. To arrive at fast transforms, we exploit the separability 
of the basis functions into radial and 𝜃1, 𝜃2 dependence. This allows us to make use of quadrature along the radial direction, and 
subsequently, efficient two-dimensional fast Fourier transforms (FFTs) along the 𝜃1, 𝜃2 directions for each radial grid point, or for 
each radial basis function. Since the radial part of the basis functions consists of Bessel functions, we have also investigated the use 
of Hankel and discrete Bessel transforms [73–75]. However, we found that the quadrature approach adopted here resulted in better 
performance for the basis set sizes considered, consistent with some earlier studies [76].

In what follows, 𝑂𝑀×𝑁 is used to denote a zero matrix of size 𝑀 × 𝑁 . The typical real space grid point for sampling a function 
will be denoted as (𝜃i

1, 𝜃
j
2, 𝑟

k), with i ∈ {1, 2, … , 𝑁𝜃1
}, j ∈ {1, 2, … , 𝑁𝜃2

} and k ∈ {1, 2, … , 𝑁𝑟}. We will use the MATLAB commands

ifft2 and fft2 to denote two-dimensional fast inverse and forward Fourier Transforms respectively [46]. Additionally, we will use 
the MATLAB commands ifftshift and fftshift to denote rearrangements of Fourier transform coefficients related to shifting of zero 
frequency components to matrix center [46]. Finally, we will use the MATLAB ‘:’ (colon) operator notation to denote array/matrix 
indices with regular increments. Thus, 𝚒 ∶ 𝚔 ∶ 𝚓 will denote indices starting at 𝚒, incremented by 𝚔 and ending at 𝚓, 𝚒 ∶ 𝚓 will denote 
the indices 𝚒, 𝚒 + 1, 𝚒 + 2, … , 𝚓 − 1, 𝚓, and simply ‘:’ will denote all indices along a particular matrix dimension.

3.4.1. Fast inverse basis transform

Given the expansion coefficients {𝑔̂𝑚,𝑛,𝑘}(𝑚,𝑛,𝑘)∈Γ, a naive way of implementing the inverse basis transform would be to calculate 
10

each basis function {𝐹𝑚,𝑛,𝑘}(𝑚,𝑛,𝑘)∈Γ at every grid point (𝜃i
1, 𝜃

j
2, 𝑟

k), and to then evaluate the sum:
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𝑔(𝜃i
1, 𝜃

j
2, 𝑟

k) =
∑
Γ

𝑔̂𝑚,𝑛,𝑘𝐹𝑚,𝑛,𝑘(𝜃i
1, 𝜃

j
2, 𝑟

k) . (42)

The computational complexity of this “naive inverse transform” is easily seen to be (𝑀max𝑁𝜃1
𝑁max𝑁𝜃2

𝐾max𝑁𝑟), which simplifies to 
(𝑀2

max𝑁2
max𝐾

2
max). The constant involved in the latter estimate can be seen to be quite large based on the discussion in Section 3.1. 

To remedy this situation, we express the basis functions as in Appendix B, i.e., 𝐹𝑚,𝑛,𝑘(𝜃1, 𝜃2, 𝑟) = 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2) 𝜉𝑛,𝑘(𝑟) and also rewrite 
the eq. (42) as:

𝑔(𝜃i
1, 𝜃

j
2, 𝑟

k) =
𝑀max∑

𝑚=−𝑀max

𝑁max∑
𝑛=−𝑁max

𝐾max∑
𝑘=1

𝑔̂𝑚,𝑛,𝑘 𝑒𝑖2𝜋(𝑚𝜃i
1+𝑛𝔑𝜃

j
2) 𝜉𝑛,𝑘(𝑟k)

=
𝑀max∑

𝑚=−𝑀max

𝑁max∑
𝑛=−𝑁max

𝑒𝑖2𝜋(𝑚𝜃i
1+𝑛𝔑𝜃

j
2)
(𝐾max∑

𝑘=1
𝑔̂𝑚,𝑛,𝑘 𝜉𝑛,𝑘(𝑟k)

)
. (43)

Since the quantity in parentheses is independent of the basis function index 𝑘, we may rewrite the above as:

𝑔(𝜃i
1, 𝜃

j
2, 𝑟

k) =
𝑀max∑

𝑚=−𝑀max

𝑁max∑
𝑛=−𝑁max

𝑒𝑖2𝜋(𝑚𝜃i
1+𝑛𝔑𝜃

j
2) 𝐺𝑚,𝑛(𝑟k)

with ∶ 𝐺𝑚,𝑛(𝑟k) =
𝐾max∑
𝑘=1

𝑔̂𝑚,𝑛,𝑘 𝜉𝑛,𝑘(𝑟k) .

(44)

Thus, if the quantities 𝐺𝑚,𝑛(𝑟k) are known, calculation of the inverse basis transform amounts to computing an inverse two-

dimensional fast Fourier transform at each radial grid point 𝑟k. Additionally, we observe that at each radial grid point 𝑟k, 𝐺𝑚,𝑛(𝑟k)
can be expressed as a vector dot product between two 𝐾max dimensional vectors, i.e., {𝑔̂𝑚,𝑛,𝑘}

𝐾Max

𝑘=1 and {𝜉𝑛,𝑘(𝑟k)}𝐾Max

𝑘=1 . In fact, by 
grouping the evaluation of 𝐺𝑚,𝑛(𝑟k) for different grid points together, the above operation may be expressed as the product of a 
𝑁𝑟 ×𝐾max matrix with a 𝐾max dimensional vector, which allows for the use of Level-2 BLAS [77] operations. If the radial part of the 
basis functions (i.e., 𝜉𝑛,𝑘(𝑟k)) are available ahead of time, the above steps provide a convenient recipe of computing the inverse ba-

sis transforms with computational complexity  
(
𝑀max𝑁max𝐾max

(
𝐾max + log

(
𝑀max

)
+ log

(
𝑁max

)))
, a significant improvement over 

the naive algorithm discussed earlier. We outline the overall steps of our implementation in Algorithms 1 and 2, and also illustrate 
some key aspects through Fig. 5.

In Fig. 4 we compare the naive and fast inverse transforms as implemented in HelicES. The starting vectors {𝑔̂𝑚,𝑛,𝑘}(𝑚,𝑛,𝑘)∈Γ were 
randomly chosen for the tests. The results from these two methods always agreed with each other to machine precision, guaranteeing 
consistency of the implementations. However, consistent with the discussion above, the computational time for the naive transforms 
is found to scale in a quadratic manner with the basis set size, while for the fast transforms, it is close to being linear. The fact 
that the observed scaling of our fast transform implementation is actually sublinear, is almost certainly related to our use of machine 
optimized linear algebra and Fourier transform routines as available within MATLAB.

Algorithm 1: Fast inverse basis transform.

Input: The vector of expansion coefficients {𝑔̂𝑚,𝑛,𝑘} ∈ℂ
Prerequisite: The radial basis functions sampled on the grid {𝑟k}𝑁𝑟

𝑘=1 ,

i.e., for each integer 𝑛 ∈ [−𝑁max , 𝑁max], the matrix:

ℜ𝑛 =
⎛⎜⎜⎝

𝜉𝑛,1(𝑟𝟣) … 𝜉𝑛,𝐾max
(𝑟𝟣)

⋮ ⋱ ⋮
𝜉𝑛,1(𝑟𝑁𝑟 ) … 𝜉𝑛,𝐾max

(𝑟𝑁𝑟 )

⎞⎟⎟⎠
− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
Initialize 𝑔 = 𝑂𝑁𝑟𝑁𝜃1

𝑁𝜃2
×1 , 𝐺 = 𝑂(2𝑀max+1)(2𝑁max+1)𝑁𝑟×1

Initialize 𝑖, 𝑗, 𝑝 = 1
for 𝑚, 𝑛 ∈ Γ do

Calculate 𝐺(𝑖 ∶ 𝑖 +𝑁𝑟 − 1) =ℜ𝑛 ∗ 𝑔̂𝑚,𝑛,𝑘(𝑗 ∶ 𝑗 +𝐾max − 1)
𝑖 = 𝑖 +𝑁𝑟

𝑗 = 𝑗 +𝐾max

end

for 𝑝 ≤ 𝑁𝑟 do
Set 𝑣̂ = 𝐺(𝑝 ∶ 𝑁𝑟 ∶ end)
𝑔(𝑝 ∶ 𝑁𝑟 ∶ end) = AngularInverseTransform(𝑣̂)

end

Result: The inverse basis transform 𝑔 (𝜃1 , 𝜃2 , 𝑟) of the vector {𝑔̂𝑚,𝑛,𝑘}

3.4.2. Fast forward basis transform

We now discuss the implementation of forward basis transforms within HelicES. Given a function 𝑔(𝜃1, 𝜃2, 𝑟), the forward basis 
11

transform is defined as:
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Algorithm 2: AngularInverseTransform (fast angular 2d inverse Fourier transform).

Input: Vector 𝑣̂∈ℂ(2𝑀max+1)∗(2𝑁max+1)

Initialize  = 𝑂𝑁𝜃1
×𝑁𝜃2

∕∕Note: 𝑁𝜃1
= 4𝑀max + 1, 𝑁𝜃2

= 4𝑁max + 1
Reshape 𝑣̂ into a matrix  ∈ℂ(2𝑁max+1)×(2𝑀max+1)

(𝑁max + 1 ∶ 3𝑁max + 1, 𝑀max + 1 ∶ 3𝑀max + 1) = 
 = ifft2(ifftshift()))
Scale  = ∗ (𝑁𝜃1

∗ 𝑁𝜃2
)

Reshape  into a column vector 𝑣 ∈ℂ𝑁𝜃1
∗𝑁𝜃2

Result: The angular inverse Fourier transform 𝑣(𝜃1, 𝜃2) of the vector 𝑣̂

Fig. 5. Pictorial representation of the workings of the fast angular 2D inverse Fourier transform (Algorithm 2).

𝑔̂𝑚,𝑛,𝑘 = ⟨𝑔,𝐹𝑚,𝑛,𝑘⟩L2() =

1

∫
0

1
𝔑

∫
0

𝑅

∫
0

𝑔(𝜃1, 𝜃2, 𝑟)𝐹 ∗
𝑚,𝑛,𝑘(𝜃1, 𝜃2, 𝑟) 2𝜋𝜏𝑟𝑑𝑟𝑑𝜃2 𝑑𝜃1 . (45)

With 𝐹𝑚,𝑛,𝑘 and 𝑔 both sampled on the real space grid, this can be approximated via quadrature as:

𝑔̂𝑚,𝑛,𝑘 ≈ 2𝜋𝜏 ∗
(𝑁𝜃1∑

𝗂=1

𝑁𝜃2∑
𝗃=1

𝑁𝑟∑
𝗄=1

𝑔(𝜃i
1, 𝜃

j
2, 𝑟

k)𝑒−𝑖2𝜋(𝑚𝜃i
1+𝑛𝔑𝜃

j
2) 𝜉𝑛,𝑘(𝑟k)𝜔k

𝑟 𝜔𝗂
𝜃1

𝜔
𝗃
𝜃2

)
. (46)

Here, the quadrature weights along the 𝜃1, 𝜃2 directions are constants, i.e., 𝜔𝗂
𝜃1

= 1∕𝑁𝜃1
and 𝜔𝗃

𝜃2
= 1∕(𝔑𝑁𝜃2

), due to the use of Fourier 
nodes (i.e., trapezoidal rule). The radial weights {𝜔𝗄

𝑟}
𝑁𝑟

𝗄=1 correspond to Gauss-Jacobi quadrature. We can see that like the case of the 
inverse transforms, a naive implementation of the above expression will lead to a computational complexity of (𝑀2

max𝑁2
max𝐾

2
max). 

Instead, we deal with the evaluation of this expression along the 𝜃1, 𝜃2 directions simultaneously at each radial grid point using 2D 
FFTs, and then perform quadrature in the radial direction. Thus, we compute:

𝐻𝑚,𝑛(𝑟k) = 1
𝑁𝜃1

𝑁𝜃2

∗
(𝑁𝜃1∑

𝗂=1

𝑁𝜃2∑
𝗃=1

𝑔(𝜃i
1, 𝜃

j
2, 𝑟

k)𝑒−𝑖2𝜋(𝑚𝜃i
1+𝑛𝔑𝜃

j
2)
)

, (47)

followed by:

𝑔̂𝑚,𝑛,𝑘 =
2𝜋𝜏

𝔑
∗
( 𝑁𝑟∑

𝗄=1
𝐻𝑚,𝑛(𝑟k) 𝜉𝑛,𝑘(𝑟k)𝜔k

𝑟

)
. (48)

The radial quadratures in the above expression can be conveniently cast in terms of Level-2 BLAS [77] operations if the radial basis 
functions scaled by the corresponding quadrature weights (i.e. {𝜔k

𝑟 𝜉𝑛,𝑘(𝑟k)}𝐾Max

𝑘=1 ) are available as a matrix ahead of time. We outline 
12

the steps of our implementation in Algorithms 3 and 4, and illustrate key aspects in Fig. 6.
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Algorithm 3: Fast forward basis transform.

Input: Real space representation of function {𝑔(𝜃i
1, 𝜃j

2 , 𝑟k)} ∈ℂ𝑁𝑟𝑁𝜃1
𝑁𝜃2

Prerequisite: The radial basis functions sampled on the grid {𝑟k}𝑁𝑟

𝑘=1 , scaled by

the corresponding quadrature weights i.e., for each integer 𝑛 ∈ [−𝑁max , 𝑁max],
the following matrix:

𝔒𝑛 =
⎛⎜⎜⎜⎝

𝜔𝟣
𝑟
𝜉𝑛,1(𝑟𝟣) … 𝜔

𝑁𝑟
𝑟 𝜉𝑛,1(𝑟𝑁𝑟 )

⋮ ⋱ ⋮
𝜔𝟣

𝑟
𝜉𝑛,𝐾max

(𝑟𝟣) … 𝜔
𝑁𝑟
𝑟 𝜉𝑛,𝐾max

(𝑟𝑁𝑟 )

⎞⎟⎟⎟⎠
− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
Initialize 𝑔̂ = 𝑂×1 , 𝐻 = 𝑂𝑁𝑟×(2𝑀max+1)(2𝑁max+1)
Initialize 𝑖, 𝑗, 𝑝 = 1
for 𝑝 ≤ 𝑁𝑟 do

Set 𝑢 = 𝑔
(
𝑝 ∶ 𝑁𝑟 ∶ end

)
𝐻(𝑝, ∶) = AngularForwardTransform(𝑢)

end

for 𝑚, 𝑛 ∈ Γ do
Calculate 𝑔̂(𝑖 ∶ 𝑖 +𝐾max − 1) =𝔒𝑛 ∗ 𝐻(∶, 𝑗)
𝑖 = 𝑖 +𝐾max

𝑗 = 𝑗 + 1
end

Scale 𝑔̂ = (2𝜋𝜏∕𝔑) ∗ 𝑔̂

Result: The forward basis transform {𝑔̂𝑚,𝑛,𝑘} of the function 𝑔 (𝑟, 𝜃1 , 𝜃2)

Algorithm 4: AngularForwardTransform (fast angular 2d forward Fourier transform).

Input: Vector containing real space representation of 2D angular function on

Fourier grid, i.e., {𝑢(𝜃i
1, 𝜃j

2)} ∈ℂ𝑁𝜃1
𝑁𝜃2

Reshape 𝑢 into a matrix  ∈ℂ𝑁𝜃2
×𝑁𝜃1

 = fft2()
Scale  = ( 1

𝑁𝜃1
𝑁𝜃2

) ∗ 
 = fftshift()

𝑢̂ = (𝑁max + 1 ∶ 3𝑁max + 1, 𝑀max + 1 ∶ 3𝑀max + 1)
Result: The 2D angular Fourier transform {𝑢̂𝑚,𝑛} of the function 𝑢 (𝜃1 , 𝜃2)

Fig. 6. Pictorial representation of the workings of the fast angular 2D forward Fourier transform (Algorithm 4). ‘Scale’ indicates dividing the result of the 2D FFT by 
(𝑁𝜃1

𝑁𝜃2
).

Referring to Fig. 4, we see that like the case of the fast inverse basis transforms, our implementation of the fast forward basis 
transforms scale in a sublinear manner with respect to basis set size increase, although a somewhat worse performance is expected 
theoretically. In contrast, a naive implementation of the forward transform scales in a quadratic manner with respect to basis set 
size, although both implementations of the transforms always agree with each other to machine precision.

In practice, the differences between the efficiencies of the fast and the naive transform implementations (both forward and inverse 
transforms) are not only apparent in terms of their respective scalings with respect to basis set size, but also the actual computational 
13

wall times. Indeed, we found that the fast transform implementations can be orders of magnitude faster as compared to the naive 
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ones, even for relatively small basis set sizes. In Algorithm 5, we outline the steps of calculating the product of the Hamiltonian 
matrix with a wavefunction vector block by use of the fast transforms, as implemented in HelicES.

Algorithm 5: Product of Hamiltonian matrix with a block vector of wavefunctions.

Input: Block of 𝑁s wavefunctions expressed in reciprocal space, i.e., 𝑋̂ ∈ℂ×𝑁s ,

real space representation of local potential 𝑉 (𝜃1 , 𝜃2 , 𝑟) as a vector 𝒱 ∈ℂ𝑁𝜃1
𝑁𝜃2

𝑁𝑟 ,

cyclic k-point 𝜈 and helical k-point 𝜂.

Prerequisites: Indexing function 𝔦 ∶ Γ → {1, 2, … , } (eq. (35)),

for each 𝑛 ∈ [−𝑁max , 𝑁max], the matrix 𝐼𝑛 ∈ℝ𝐾max×𝐾max with entries

given by 𝐼𝑛(𝑘, 𝑘′) = (𝑛, 𝑘, 𝑘′) (eq. (31)),

vector Λ ∈ℝ with entries corresponding to eq. (20), i.e., Λ(𝔦(𝑚, 𝑛, 𝑘)) = 𝜆0
𝑚,𝑛,𝑘

,

vector ℳ ∈ℂ with entries ℳ(𝔦(𝑚, 𝑛, 𝑘)) = 𝑖2𝜋𝑚,

and vector 𝒩 ∈ℂ with entries 𝒩(𝔦(𝑚, 𝑛, 𝑘)) = 𝑖2𝜋𝔑𝑛.

− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−
Initialize 𝑎 = 2𝜋2

𝜏2

{
𝜈𝛼 (2𝜂 − 𝜈𝛼) − 𝜂2

}
, 𝑏 = 2𝑖𝜋

𝜏2
(𝜈𝛼 − 𝜂), 𝑐 = 2𝑖𝜋𝛼

𝜏2
(𝜂 − 𝜈𝛼)

Set 𝑌 = 𝑂×𝑁s
∕∕Result to be stored in this

for 𝑗 ≤ 𝑁s do

𝑍̂ = 𝑋̂(∶, 𝑗) ∕∕Work on 𝑗th wavefunction.

𝑃 =ℳ . ∗ 𝑍̂

𝑄̂ =𝒩. ∗ 𝑍̂

𝑌 (∶, 𝑗) = 1
2
∗ (Λ . ∗ 𝑍̂)

𝑌 (∶, 𝑗) = 𝑌 (∶, 𝑗) − 𝑎 ∗ 𝑍̂ − 𝑏 ∗ 𝑃 − 𝑐 ∗ 𝑄̂

if 𝜈 ≠ 0 then
Initialize 𝑖 = 1
for 𝑚, 𝑛 ∈ Γ do

𝑇 = 𝜈2

𝑅2 ∗ 𝑍̂(𝑖 ∶ 𝑖 +𝐾max − 1) + 𝑖𝜈

𝜋𝑅2 ∗ 𝑄̂(𝑖 ∶ 𝑖 +𝐾max − 1)
𝑌 (𝑖 ∶ 𝑖 +𝐾max − 1, 𝑗) = 𝑌 (𝑖 ∶ 𝑖 +𝐾max − 1, 𝑗) + 𝐼𝑛 ∗ 𝑇

𝑖 = 𝑖 +𝐾max

end

end

𝑍 = FastInverseBasisTransform(𝑍̂) ∕∕Use Algorithm 1.

𝑌 (∶, 𝑗) = 𝑌 (∶, 𝑗) + FastForwardBasisTransform(𝑍 . ∗𝒱) ∕∕Use Algorithm 3.

end

Result: 𝑌 ∈ℂ×𝑁s , i.e., the product of the Hamiltonian with 𝑋̂ at the given values of 𝜂, 𝜈.

3.5. Eigensolvers and preconditioning

As mentioned earlier, we make use of matrix-free iterative eigenvalue solvers for diagonalization of the discretized Hamiltonian. 
Within HelicES, we have investigated two different diagonalization strategies for this purpose. The first is based on the Krylov-Schur 
method as implemented in the MATLAB Eigs function [78–80]. The second is based on a MATLAB implementation [81] of the 
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) scheme [82–84]. LOBPCG requires the use of a preconditioner, 
for which we have adopted the Teter-Payne-Allan (TPA) recipe [79,80,85]. This preconditioner was originally developed in the 
context of plane-wave calculations of bulk systems, but has also been successfully applied to other spectral methods [45]. During 
LOBPCG iterations, use of the TPA preconditioner requires the calculation and application of a diagonal matrix 𝒦 ∈ ℝ× to the 
residual vector. The entries of the matrix are:

𝒦𝑖,𝑗 =
27 + 18𝑔𝑖 + 12𝑔2𝑖 + 8𝑔3𝑖

27 + 18𝑔𝑖 + 12𝑔2𝑖 + 8𝑔3𝑖 + 16𝑔4𝑖
𝛿𝑖,𝑗 , (49)

with:

𝑔𝑖 =
kinetic energy of basis function 𝑖

kinetic energy of the residual vector
. (50)

As shown in Fig. 7, the preconditioner can have quite a dramatic effect on the convergence of the diagonalization procedure, espe-

cially as the basis set size (and therefore, the size of the discretized Hamiltonian) is increased. Thus, the benefits of the preconditioner 
are likely to become more apparent when larger systems and/or harder pseudopotentials are considered.

We found that use of LOBPCG along with the TPA preconditioner generally tends to require longer diagonalization wall times as 
compared to Eigs along with an energy cutoff. Therefore, the latter strategy is adopted for most of the examples considered in the 
next section. Implementation of more efficient eigensolvers in HelicES, particularly, ones that work well within self consistent field 
iterations [87–89], is the scope of future work.

4. Results

We now present results obtained using HelicES and investigate the convergence and accuracy properties of our implementation. 
14

All of our calculations have been carried out using smooth empirical pseudopotentials [86,90]. We have used the planewave code 
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Fig. 7. Effect of the Teter-Payne-Allan preconditioner [85] on LOBPCG [82] iterations for diagonalizing the discretized Hamiltonian in HelicES. An untwisted (6, 6)
armchair carbon nanotube (Mayer pseudopotentials [86]) has been used, and the residual associated with the 2nd eigenvalue for 𝜂 = 0, 𝜈 = 0 as been monitored. For 
clarity, the residual for every 10th iteration has been plotted. Without preconditioning, the number of iterations required to reach a given convergence threshold tends 
to dramatically increase as the basis set grows larger. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

PETRA [91], as well as two separate MATLAB based finite difference codes to generate reference data for comparison purposes. 
Specifically, we have employed the helical symmetry adapted finite difference code Helical DFT [20,30] and the Cartesian grid finite 
difference code RSDFT [92]. The original versions of these finite difference codes were designed for self consistent field calculations, 
and were modified to work with the empirical pseudopotentials used in HelicES. We have also carried out comparisons of results 
obtained from HelicES against data obtained from the literature [86,90]. We have used the WebPlotDigitizer tool [93] for extracting 
data from published plots.

4.1. Computational platform

All simulations involving HelicES were carried out using dedicated desktop workstations (Dell Precision 7920 Tower, iMac, and 
iMac Pro) or on single nodes of the Hoffman2 cluster at UCLA’s Institute for Digital Research and Education (IDRE). The Dell Precision 
workstation has an 18-core Intel Xeon Gold 5220 processor (24.75 L3 MB cache, 2.2 GHz clock speed), 256 GB of RAM and 1 TB of 
SATA Class 20 Solid State Drive (SSD) storage. The iMac has an 8-core Apple M1 processor (12 MB L2 cache, 3.2 GHz clock speed), 
16 GB of RAM and a 2 TB Solid State Drive (SSD). The iMac Pro has an 18-core Intel Xeon W processor (24.75 MB L3 cache, 2.3
GHz clock speed), 256 GB of RAM and a 2 TB SSD. Every compute node of the Hoffman2 cluster has two 18-core Intel Xeon Gold 
6140 processors (24.75 MB L3 cache, clock speed of 2.3 GHz), 192 GB of RAM and local SSD storage. MATLAB version 9.7.0 (R2019b) 
was used for the simulations. Parallelization was achieved by use of using MATLAB’s Parallel Computing Toolbox. Reference results 
generated using Helical DFT [30], RSDFT [92] and PETRA [91] employed the above platforms as well.

4.2. Convergence studies

Using a twisted armchair carbon nanotube as an example system (Mayer pseudopotentials [86]), we first investigate the con-

vergence properties of HelicES. Considering first the case of eigenvalues of the Hamiltonian at 𝜂 = 0, 𝜈 = 0, we see in Fig. 8 that 
as the number of basis functions in HelicES is increased, there is a rapid convergence to the reference values, regardless of which 
eigenvalue is considered. Consistent with earlier results for electronic structure calculations using spectral basis sets [45,70], He-

licES shows a curvature on a log-log scale, indicative of super-polynomial convergence. In contrast, the finite difference method, 
also shown on the same figure, shows slower, polynomial convergence. This is consistent with earlier findings for finite difference 
electronic structure calculations using curvilinear coordinates [20,40]. Furthermore, when the energy cutoff criterion is engaged, 
HelicES appears to employ noticeably fewer degrees of freedom than the finite difference method (Helical DFT) in reaching the same 
levels of convergence.

The electronic features of quasi-one-dimensional systems can be characterized by one-dimensional band diagrams [20,30], and 
these can be readily calculated for systems of interest using HelicES. As the next step in our studies, we checked the convergence 
behavior of the code with regard to a few quantities that are associated with the overall features of the one-dimensional band diagram 
of the aforementioned armchair carbon nanotube system. These include the electronic band energy — which for an insulating 
system is simply twice the sum of all occupied state eigenvalues, the valence band maximum eigenvalue, the conduction band 
minimum eigenvalue and the band gap. As shown in Fig. 9, we see that all these quantities, except for the band gap, show monotonic 
convergence to reference values. We also note that convergence of the band gap is nearly monotonic until the curve enters regions 
of very high accuracy ((10−6) in the figure) and this behavior is likely related to the fact that the band gap is calculated as the 
difference of two quantities.

Within HelicES, the electronic properties of quasi-one-dimensional systems are also expected to exhibit convergence with respect 
15

to the number of points used to discretize the 𝜂-space (Section 3.3). In Fig. 10, we explore the convergence behavior of the electron 
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Fig. 8. Convergence of the first three non-degenerate eigenvalues of an armchair (16, 16) carbon nanotube with a twist parameter of 𝛼 = 0.002 using HelicES (both 
with and without the energy cutoff mask implemented) and a finite difference method (FDM), i.e., Helical DFT [20,30]. The mesh size of the FDM decreases from 0.7
Bohrs to 0.4 Bohrs (in steps of 0.05 Bohrs) as the full Hamiltonian size varies from 30, 744 to 157, 440. The sparsity factor for the FDM Hamiltonian was 0.0055. The 
reference eigenvalues were taken to be the ones using an energy cutoff of 40 Ha for HelicES and a mesh spacing of 0.10 Bohr for Helical DFT. The 𝜂 = 0, 𝜈 = 0 case 
(“gamma point”) is considered here. Note that the errors in the eigenvalues, for different eigenvalues, differ by (10−4) or less in the FDM case, which makes them 
indistinguishable in the plot above.

Fig. 9. Convergence of the electronic band energy, the Valence Band Maximum (VBM) eigenvalue, the Conduction Band Minimum (CBM) eigenvalue, and the band 
gap, with respect to the energy cutoff, in the HelicES code. An armchair (16, 16) carbon nanotube with a twist parameter of 𝛼 = 0.002 has been investigated. The 
reference values were generated using an energy cutoff of 40 Ha.

Fig. 10. Convergence of the band energy and electron density of a (16, 16) armchair carbon nanotube with a twist parameter of 𝛼 = 0.002. The reference value was 
16

taken to be from a calculation with 45 𝜂-points.
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Table 1

Accuracy of the HelicES code while studying finite systems (green arrow denotes the 𝐞𝐙 axis). Reference data was generated using RSDFT [92], 
a finite difference method (FDM) based MATLAB code. The last two columns show the maximum differences in the eigenvalues and the band 
energy per atom computed using the two methods.

System (# atoms) Hamiltonian size Maximum difference in the 
eigenvalues (in Ha) between 
HelicES and FDM

Difference in band energy 
(in Ha/atom) between 
HelicES and FDM

Carbon dimer (2 atoms) HelicES without mask: 148625
HelicES with mask: 96353
FDM: 1030301

6.0698 × 10−5 5.7475 × 10−5

Carbon ring (6 atoms) HelicES without mask: 148625
HelicES with mask: 96353
FDM: 8120601

3.8266 × 10−5 3.7686 × 10−5

Carbon disk (24 atoms) HelicES without mask: 240096
HelicES with mask: 152556
FDM: 4173281

7.7064 × 10−5 4.7145 × 10−5

Carbon pillar (120 atoms) HelicES without mask: 129591
HelicES with mask: 85741
FDM: 8120601

1.2604 × 10−4 3.7118 × 10−5

density (in terms of the 𝐿1 norm per electron) and the electronic band energy for the aforementioned carbon nanotube system, as the 
number of 𝜂 points in the calculation is increased. We see that both the above quantities show excellent convergence. We note that 
the electron density can be calculated from the wavefunctions 𝜙𝑗 (𝜃1, 𝜃2, 𝑟; 𝜂, 𝜈), and the corresponding electronic occupation numbers 
𝜍𝑗 (𝜂, 𝜈) as:

𝜌(𝜃1, 𝜃2, 𝑟) =
2
𝔑

𝑁s∑
𝑗=1

𝑁𝜂∑
𝑏=1

𝔑−1∑
𝜈=0

𝑤𝑏 𝜍𝑗 (𝜂𝑏, 𝜈)
|||𝜙𝑗 (𝜃1, 𝜃2, 𝑟;𝜂𝑏, 𝜈)

|||2 . (51)

This requires inverse basis transforms to be carried out on each wavefunction vector, at the end of the diagonalization procedure. 
We also note from Figs. 9, 10 that for the Mayer pseudopotential employed in the above calculations, an energy cutoff of 16 Ha and 
15 𝜂-points are more than sufficient to reach chemical accuracy.

4.3. Accuracy studies

While the discussion in Section 4.2 serves to illustrate the systematic convergence properties of HelicES, it does not address the 
accuracy or correctness of the converged results produced by the code. Therefore, we now carry out a series of systematic tests and 
compare the results produced by HelicES against solutions produced by other methods, for a variety of systems.

Our first set of tests compares the results produced by HelicES against those computed through the Finite Difference Method 
(FDM). For these studies, the Mayer pseudopotential [86] was once again employed and the energy cutoff in HelicES was set at 16
Ha. Reference results using the FDM codes were generated using a mesh spacing of 0.2 Bohr, this being the finest mesh that could 
be uniformly employed for all systems of interest, within computational resource constraints. We first used the RSDFT code [92] for 
calculating the electronic structure of a variety of finite (cluster-like) systems. The bound state eigenvalues for these same systems, as 
calculated by HelicES are compared against RSDFT results in Table 1. We see that for these discretization parameters, the agreement 
between the codes with respect to individual eigenvalues is about 1.3 × 10−4 Ha or better, while the band energies agree to within 
millihartree range, suggesting excellent accuracy.

Next, we generated the electronic band diagram associated with a deformed quasi-one-dimensional system, namely an armchair 
nanotube subjected to about 𝛽 = 2.95◦ of twist per nanometer. Reference calculations were carried out using the Helical DFT code. 
Both Helical DFT and HelicES were made to use 21 𝜂-points and the Eigs eigensolver in MATLAB. As shown in Fig. 11, the band 
diagrams produced by the two codes are virtually identical, once again suggesting the excellent accuracy of HelicES. Overall, these 
findings illustrate that HelicES adequately addresses many of the computational bottlenecks in existing methods for the study of 
electronic properties of quasi-one-dimensional systems, commensurate with its design goals.

Due to inherent design limitations, the aforementioned FDM codes are unable to simulate quasi-one-dimensional nanostructures 
17

which have atoms situated near or along the system axis (e.g. nanoribbons, nanowires or small diameter nanotubes). However, these 
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Fig. 11. Comparison of band diagrams for a twisted (16, 16) armchair carbon nanotube (diameter = 2.726 nm) with twist parameter of 𝛼 = 0.002, generated using 
HelicES and the FDM based Helical DFT code [20,30]. The green shaded region in the structure on the right is the fundamental domain used in HelicES, while the 
green arrow denotes the 𝐞𝐙 axis.

Fig. 12. Comparison of band diagrams for a (5, 5) armchair carbon nanotube (diameter = 0.851 nm) generated using HelicES and a transfer-matrix technique [86]. 
The dashed green box in the plot represents the region of the band diagram over which the reference data was available for comparison. The green shaded region in 
the structure on the right is the fundamental domain used in HelicES and the green arrow denotes the 𝐞𝐙 axis.

systems can be conveniently dealt with by HelicES. To carry out accuracy tests for such systems therefore, we compared the band 
structures calculated by HelicES against those generated through alternate electronic structure calculation techniques. The first of 
these is based on the transfer matrix method [94–96], often used in electromagnetics calculations. In Figs. 12 and 13 we see that the 
band structure calculated by HelicES is in nearly perfect agreement with results calculated using this technique in [86]. The systems 
considered here are carbon nanotubes with radii about 0.3 to 0.4 nanometers. For the (5, 5) armchair nanotube, the position of the 
Dirac cone is correctly predicted to be at 𝜂 = ±1

3 . Additionally, the (10, 0) zigzag nanotube, the band gap calculated by HelicES is 1.05
eV which is very close to the value of 1.04 eV obtained in [86].

Next, we used the PETRA code for studying an armchair graphene nanoribbon, as well as a silicon nanowire oriented along the ⟨100⟩ direction. Both these systems were treated using the empirical pseudopotentials developed in [90] and feature hydrogen pas-

sivation. Figs. 14 and 15 show that the overall agreement between HelicES and PETRA is excellent, although some minor variations 
at the edge of the highest energy band for the nanoribbon case may be observed. This is possibly due to the different boundary 
conditions being employed by PETRA and HelicES in the directions orthogonal to the ribbon axis. We also note that the band gap for 
the silicon nanowire calculated by HelicES is 3.82 eV, which is very close to the value of 3.84 eV reported in [90].

4.4. Comments on computational efficiency and timing studies

We now discuss issues connected to the computational efficiency of HelicES. By design, the code is meant to overcome the 
18

computational limitations of prior approaches in modeling quasi-one-dimensional systems. We highlight this aspect of the code 
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Fig. 13. Comparison of band diagrams for a (10, 0) zigzag carbon nanotube (diameter = 0.983 nm) generated using HelicES and a transfer-matrix technique [86]. The 
dashed green box in the plot represents the region of the band diagram over which the reference data was available for comparison. The green shaded region in the 
structure on the right is the fundamental domain used in HelicES and the green arrow denotes the 𝐞𝐙 axis.

Fig. 14. Comparison of band diagrams for a hydrogen passivated armchair graphene nanoribbon generated using HelicES and a plane-wave technique [90,91]. The 
green shaded region in the structure on the right is the fundamental domain used in HelicES and the green arrow denotes the 𝐞𝐙 axis.

Fig. 15. Comparison of band diagrams for a hydrogen passivated, ⟨100⟩ oriented silicon nanowire generated using HelicES and a plane-wave technique [90,91]. The 
dashed green box in the plot represents the region of the band diagram over which the reference data was available for comparison. The green shaded region in the 
structure in the middle is the fundamental domain used in HelicES, with the green arrow denoting the 𝐞𝐙 axis. The right image shows a top view of the structure (i.e., 
19

looking down along 𝐞𝐙).
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Fig. 16. Band diagram for an armchair graphene nanoribbon with a twist parameter of 𝛼 = 0.02 (corresponding to a rate of twist 𝛽 = 16.9◦ per nanometer) generated 
using HelicES. The green shaded region in the structure on the right is the fundamental domain used in HelicES. The green arrow denotes the 𝐞𝐙 axis.

by providing timing comparisons between HelicES and other existing methods, for a few systems of interest. We have focused on 
the Plane-wave Electronic TRAnsport (PETRA) code [90,91,97] which can model periodic systems, and Helical DFT [20,30] which 
models quasi-one-dimensional structures within a finite difference framework. For comparisons with PETRA, we chose a twisted 
hydrogen-passivated graphene nanoribbon. Note that while realistic values of 𝛼 range from 0.0005 to 0.0025 (i.e., less than about 2.1◦
per nanometer), it is not feasible to use these values in PETRA. This is because to simulate such a system in a typical plane-wave code 
like PETRA, we would require 1∕𝛼 times the number of atoms needed for untwisted geometries (for rational values of 𝛼). However, 
the number of atoms required in the fundamental domain in HelicES is independent of the amount of twist. Thus, while a realistic 
twisted nanoribbon can be studied using only 20 atoms in HelicES, PETRA would require at least 10, 000 atoms in the fundamental 
domain for the same system. Keeping this in mind, we use larger values of 𝛼 = 0.25, 0.2, 0.1, and 0.05, so that the simulation and timing 
data from PETRA could be obtained within reasonable wall times. For both codes, we used the same diagonalization technique. The 
simulations were carried out on dedicated workstations, or on a single node of the Hoffman2 cluster when larger memory was 
needed. In our studies, we noted factors of 1.26, 1.84, 3.83, and 12.25 improvement in the total diagonalization wall time of HelicES 
over PETRA, for 𝛼 = 0.25, 0.2, 0.1, and 0.05 respectively. Based on the above discussion, we anticipate that the performance gap 
between HelicES and PETRA, as well as the memory requirements of the latter, will only increase when more realistic values of 𝛼 or 
more complicated unit cells are considered.

Due to the fundamental limitations of plane-wave codes to efficiently represent helical symmetries, it also makes sense to compare 
HelicES to Helical DFT, since the right symmetries are incorporated into both these codes, although the latter uses finite differences. 
For this purpose, we studied a twisted (16, 16) armchair carbon nanotube with a diameter of 2.726 nm and a twist parameter of 
𝛼 = 0.002, and we used 21 𝜂−points. As we showed earlier (Section 4.3), while the two codes produce nearly identical results, the 
diagonalization wall time for HelicES was about a factor of 27 lower, and the memory footprint was also significantly less. These 
observations continue to be true when larger values of the energy cutoff are used in HelicES, with the diagonalization wall time of 
the code being about a factor of 8 lower than Helical DFT, even when an energy cutoff of 40 Ha is employed.

To finish this discussion on computational advantages of HelicES, we now present a system that cannot be simulated in Helical 
DFT, and one that will require extensive computational resources in typical periodic finite difference or plane-wave codes — an 
armchair graphene nanoribbon with a twist of 𝛼 = 0.02. Note that this is still a relatively high value of 𝛼, but was chosen here for 
a better visual representation of the system. The band diagram of this system is presented in Fig. 16. Noticeably, in contrast to 
the untwisted, passivated nanoribbon presented in Fig. 14, this system appears to have a vanishingly small band-gap, indicative of 
metallic behavior.

4.5. Application to the study of the electromechanical response of a nanotube

Finally, as a demonstration of the utility of the computational method developed here, we study the electromechanical response 
of a quasi-one-dimensional nanomaterial as it undergoes deformations. Specifically, we consider a carbon nanotube with a radius of 
about 1.0 nanometer (an armchair (16, 16) tube), and subject it to twisting. We start from the untwisted structure and increase the 
rate of applied twist, considering up to about 𝛽 = 7.4◦, in our simulations. Fig. 17 shows the variation of the band gap of the material 
with applied twist. For comparison purposes, results from full self consistent Kohn-Sham DFT calculations using ab initio Troullier 
Martins pseudopotentials [98] and Local Density Approximation based exchange correlation [99,100], are also shown (obtained from 
[20]). It is well known that upon twisting, armchair nanotubes — which are generally metallic in untwisted form — show metal-

to-semiconductor transitions, and that these changes manifest themselves as oscillatory behavior in the band gap [20,101–103]. We 
see from Fig. 17 that the results from HelicES do reproduce this qualitative behavior correctly, but the actual response curve is 
quantitatively different from the first principles data. This is very likely due to the lack of inclusion of atomic relaxation effects in 
20

HelicES, as well as the general failure of the Mayer pseudopotential to model scenarios where the carbon atoms do not form a perfect 
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Fig. 17. Band gap trend as the twist parameter 𝛼 is varied for a (16, 16) armchair carbon nanotube. Results from HelicES (empirical pseudopotentials) and the Helical 
DFT code (self consistent calculations with ab initio pseudopotentials and atomic relaxation effects included [20,30]) are both shown.

honeycomb lattice — a consequence of the shearing distortions that arise from the applied twist in this case. Therefore, these results 
strongly suggest the need for building in ab initio pseudopotentials and self consistent iterations into HelicES, which constitutes 
ongoing work [104].

5. Conclusions

In summary, we have presented a novel spectral method for efficiently solving the Schrödinger equation for quasi-one-dimensional 
materials and structures. The basis functions in our method — helical waves — are natural analogs of plane-waves, and allow 
systematically convergent electronic structure calculations of materials such as nanowires, nanoribbons and nanotubes to be carried 
out. We have discussed various mathematical, algorithmic and implementation oriented issues of our technique. We have also used 
our method to carry out a variety of demonstrative calculations and studied its accuracy, computational efficiency, and convergence 
behaviors.

We anticipate that the method presented here will find utility in the discovery and characterization of new forms of low dimen-

sional matter. It is particularly well suited for coupling with specialized machine learning techniques [105] and for the multiscale 
modeling of low dimensional systems [106]. Building self-consistency into the method, so as to enable ab initio calculations (e.g. us-

ing Hartree-Fock or Kohn-Sham Density Functional Theory [107]) remains the scope of ongoing and future work. An important first 
step in this direction is efficient solution of the associated electrostatics problem [108], towards which we have been making recent 
progress [104,109]. Finally, the full power of some of the techniques described here can be brought to bear upon complex materials 
problems, once a parallel, efficient, hardware optimized version of HelicES is available. Development of such a code constitutes yet 
another avenue of ongoing and future work.
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Appendix A. Derivation of the governing equation in helical coordinates

We are interested in solutions of the Schrödinger equation, i.e., 
(
− 1

2Δ + 𝑉 (𝐱)
)
𝜓 = 𝜆 𝜓 , as it applies to a quasi-one-dimensional 

structure. For a function 𝜓(𝜃1, 𝜃2, 𝑟) expressed in helical coordinates, the Laplacian is given by [29,30]:

Δ𝜓 = 𝜓𝑟𝑟 +
1
𝑟
𝜓𝑟 +

1
𝜏2

𝜓𝜃1𝜃1
− 2𝛼

𝜏2
𝜓𝜃1𝜃2

+ 1
4𝜋2

(
1
𝑟2

+ 4𝜋2𝛼2

𝜏2

)
𝜓𝜃2𝜃2

. (A.1)

Considering the helical and cyclic symmetry adapted Bloch ansatz, 𝜓(𝜃1, 𝜃2, 𝑟; 𝜂, 𝜈) = 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2)𝜙(𝜃1, 𝜃2, 𝑟; 𝜂, 𝜈), we first note:

𝜓𝑟 = 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2)𝜙𝑟 ,

𝜓𝑟𝑟 = 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2)𝜙𝑟𝑟 ,

𝜓𝜃1
= 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2)

[
−𝑖2𝜋𝜂𝜙+𝜙𝜃1

]
,

𝜓𝜃2
= 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2)

[
−𝑖2𝜋𝜈𝜙+𝜙𝜃2

]
,

𝜓𝜃1𝜃2
= 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2)

[
−4𝜋2𝜂𝜈𝜙− 𝑖2𝜋𝜈𝜙𝜃1

− 𝑖2𝜋𝜂𝜙𝜃2
+ 𝜙𝜃1𝜃2

]
,

𝜓𝜃1𝜃1
= 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2)

[
−𝑖2𝜋𝜂

(
−𝑖2𝜋𝜂𝜙+ 2𝜙𝜃1

)
+ 𝜙𝜃1𝜃1

]
,

𝜓𝜃2𝜃2
= 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2)

[
−4𝜋2𝜈2𝜙− 4𝑖𝜋𝜈𝜙𝜃2

+𝜙𝜃2𝜃2

]
.

(A.2)

Thus, we get:

Δ𝜓 =
[
𝜙𝑟𝑟 +

1
𝑟
𝜙𝑟 +

1
𝜏2

𝜙𝜃1𝜃1
− 4𝜋2𝜂2

𝜏2
𝜙− 𝑖4𝜋𝜂

𝜏2
𝜙𝜃1

− 2𝛼
𝜏2

𝜙𝜃1𝜃2
+ 8𝛼𝜋2𝜂𝜈

𝜏2
𝜙

+4𝑖𝜋𝜈𝛼

𝜏2
𝜙𝜃1

+ 4𝑖𝜋𝜂𝛼

𝜏2
𝜙𝜃2

+ 1
4𝜋2

(
1
𝑟2

+ 4𝜋2𝛼2

𝜏2

)
𝜙𝜃2𝜃2

−𝜈2
(

1
𝑟2

+ 4𝜋2𝛼2

𝜏2

)
𝜙− 𝑖𝜈

𝜋

(
1
𝑟2

+ 4𝜋2𝛼2

𝜏2

)
𝜙𝜃2

]
𝑒−𝑖2𝜋

(
𝜂𝜃1+𝜈𝜃2

)
,

(A.3)

which simplifies to:

Δ𝜓 =
[
Δ𝜙+

(
4𝜋2

𝜏2

[
𝜈𝛼 (2𝜂 − 𝜈𝛼) − 𝜂2

]
− 𝜈2

𝑟2

)
𝜙+ 4𝑖𝜋

𝜏2
(𝜈𝛼 − 𝜂)𝜙𝜃1

+𝑖

[
4𝜋𝛼

𝜏2
(𝜂 − 𝜈𝛼) − 𝜈

𝜋𝑟2

]
𝜙𝜃2

]
𝑒−𝑖2𝜋

(
𝜂𝜃1+𝜈𝜃2

)
.

(A.4)

Hence the action of the Schrödinger operator on 𝜓 can be expressed as:

(
−1
2
Δ+ 𝑉

)
𝜓 =

[
− 1

2
Δ𝜙−

(
2𝜋2

𝜏2

{
𝜈𝛼 (2𝜂 − 𝜈𝛼) − 𝜂2

}
− 𝜈2

2𝑟2

)
𝜙

−2𝑖𝜋
𝜏2

(𝜈𝛼 − 𝜂)𝜙𝜃1
− 2𝑖𝜋

[
𝛼

𝜏2
(𝜂 − 𝜈𝛼) − 𝜈

4𝜋2𝑟2

]
𝜙𝜃2

+ 𝑉 𝜙

]
𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2) .

(A.5)

Since the phase 𝑒−𝑖2𝜋(𝜂𝜃1+𝜈𝜃2) ≠ 0, canceling it from both sides of the Schrodinger equation in 𝜓 leaves us with the following eigenvalue 
problem in 𝜙:[

− 1
2
Δ𝜙−

(
2𝜋2

𝜏2

{
𝜈𝛼 (2𝜂 − 𝜈𝛼) − 𝜂2

}
− 𝜈2

2𝑟2

)
𝜙− 2𝑖𝜋

𝜏2
(𝜈𝛼 − 𝜂)𝜙𝜃1

−

2𝑖𝜋
[

𝛼

𝜏2
(𝜂 − 𝜈𝛼) − 𝜈

4𝜋2𝑟2

]
𝜙𝜃2

+ 𝑉 𝜙

]
= 𝜆𝜙

(A.6)
22

This equation needs to be discretized and solved over the fundamental domain, along with suitable boundary conditions in 𝜙.
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Appendix B. Derivation of the basis set

In analogy to the classical plane-wave method [27,28], the basis functions in our scheme are eigenfunctions of the Laplacian. 
However, instead of periodic boundary conditions obeyed by planewaves, we consider boundary conditions resulting from invariance 
under helical and cyclic symmetries. The calculation presented below is based on similar results in [29], while a vector version of 
this calculation appears in [52,53] in the context of x-ray diffraction patterns of twisted nanomaterials.

Let 𝐹 (𝜃1, 𝜃2, 𝑟) be a basis function expressed in helical coordinates. Then, invariance under helical and cyclic symmetries implies 
that this function must be periodic in 𝜃1 with a period of 1, and also periodic in 𝜃2 with a period of 1

𝔑 . Assuming 𝐹 (𝜃1, 𝜃2, 𝑟) is 
separable, we characterize the dependence of the function on 𝜃1 and 𝜃2 through Fourier modes (i.e., complex exponentials), and 
write:

𝐹𝑚,𝑛,𝑘(𝜃1, 𝜃2, 𝑟) = 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2) 𝜉(𝑟) . (B.1)

Here 𝜉(𝑟) is a purely radial function that possibly depends on 𝑚, 𝑛, 𝑘, and incorporates normalization constants. The Laplacian of the 
above function in the helical coordinates is:

Δ𝐹𝑚,𝑛,𝑘 = 𝜉𝑟 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2) + 1
𝑟
𝜉𝑟𝑟 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2) − 4𝜋2𝑚2

𝜏2
𝐹𝑚,𝑛,𝑘

+8𝛼𝜋2𝑛𝑚𝔑
𝜏2

𝐹𝑚,𝑛,𝑘 −
(

1
𝑟2

+ 4𝜋2𝛼2

𝜏2

)
𝑛2𝔑2𝐹𝑚,𝑛,𝑘 ,

(B.2)

which can be rewritten as:

Δ𝑓𝑚,𝑛,𝑘 = 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2)
[
𝜉𝑟𝑟 +

1
𝑟
𝜉𝑟

]
− 𝐹𝑚,𝑛,𝑘

[
𝑛2𝔑2

𝑟2
+ 4𝜋2

𝜏2
(𝑚− 𝛼𝑛𝔑)2

]
. (B.3)

Now, imposing the condition that 𝑓𝑚,𝑛,𝑘 is an eigenfunction of the Laplacian, i.e.,

−Δ𝐹𝑚,𝑛,𝑘 = 𝜆0
𝑚,𝑛,𝑘

𝐹𝑚,𝑛,𝑘 , (B.4)

we get:

−𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2)
[
𝜉𝑟𝑟 +

1
𝑟
𝜉𝑟

]
+ 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2)

[
𝑛2𝔑2

𝑟2
+ 4𝜋2

𝜏2
(𝑚− 𝛼𝑛𝔑)2

]
𝜉

=𝜆0
𝑚,𝑛,𝑘

𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2)𝜉 ,

(B.5)

which simplifies to:

𝜉𝑟𝑟 +
1
𝑟
𝜉𝑟 − 𝜉

[
𝑛2𝔑2

𝑟2
− 𝜆0

𝑚,𝑛,𝑘
+ 4𝜋2

𝜏2
(𝑚− 𝛼𝑛𝔑)2

]
= 0 . (B.6)

Denoting 𝜉2𝑚,𝑛 =
4𝜋2

𝜏2
(𝑚− 𝛼𝑛𝔑)2 and performing the change of variables:

𝑟 = 𝑟
√

𝜆0
𝑚,𝑛,𝑘

− 𝛾2𝑚,𝑛 , 𝜉(𝑟) = 𝜉(𝑟) , (B.7)

we see that the above equation reduces to:

𝑟2 𝜉𝑟𝑟 + 𝑟 𝜉𝑟 + (𝑟2 − 𝑛2𝔑2)𝜉 = 0 . (B.8)

This is simply Bessel’s equation [67,110] in 𝜉(𝑟). Since 𝑛𝔑 is real, the general solution of this equation can be expressed in terms of 
ordinary Bessel functions of the first and second kind as:

𝜉(𝑟) = 𝐴𝐽𝑛𝔑(𝑟) +𝐵 𝑌𝑛𝔑(𝑟) . (B.9)

To evaluate the constants 𝐴 and 𝐵, we need to invoke boundary and normalization conditions. Since the wavefunctions are expected 
to be finite valued at the origin (𝑟 = 0), and Bessel functions of the second kind approach infinity near 0, we conclude that 𝐵 = 0. 
Furthermore, since the wavefunctions obey Dirichlet boundary conditions on the lateral surface of the computational domain (𝑟 = 𝑅), 
so should the basis functions used to discretize them. Hence, we obtain:

𝜉

(
𝑅
√

𝜆0
𝑚,𝑛,𝑘

− 𝛾2𝑚,𝑛

)
= 𝐴𝐽𝑛𝔑

(
𝑅
√

𝜆0
𝑚,𝑛,𝑘

− 𝛾2𝑚,𝑛

)
= 0 . (B.10)

This implies that 𝑅
√

𝜆0
𝑚,𝑛,𝑘

− 𝛾2𝑚,𝑛 must be a root of the ordinary Bessel function of the first kind. Denoting the 𝑘𝑡ℎ root (𝑘 = 1, 2, …) of 
the Bessel function of order 𝑝, as 𝑏𝑝

𝑘
, we see that:

𝑏𝑛𝔑
𝑘

= 𝑅
√

𝜆0
𝑚,𝑛,𝑘

− 𝛾2𝑚,𝑛 , (B.11)
23

from which, it follows that:
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𝜆0
𝑚,𝑛,𝑘

=

(
𝑏𝑛𝔑

𝑘

𝑅

)2

+
[ 2𝜋

𝜏
(𝑚− 𝛼𝑛𝔑)

]2
. (B.12)

Thus, we have:

𝜉(𝑟) = 𝐴𝐽𝑛𝔑

(
𝑏𝑛𝔑

𝑘

𝑅
𝑟

)
. (B.13)

Finally, to determine the constant 𝐴, we apply the orthonormality condition between two distinct basis functions 𝐹𝑚,𝑛,𝑘 and 𝐹𝑚′ ,𝑛′ ,𝑘′ :

⟨𝐹𝑚,𝑛,𝑘, 𝐹𝑚′ ,𝑛′ ,𝑘′ ⟩L2() = 𝛿𝑚,𝑚′ 𝛿𝑛,𝑛′ 𝛿𝑘,𝑘′ . (B.14)

This requires that:

𝐴2

1

∫
0

𝑒𝑖2𝜋(𝑚−𝑚′)𝜃1𝑑𝜃1×

1
𝔑

∫
0

𝑒𝑖2𝜋𝔑(𝑛−𝑛′)𝜃2𝑑𝜃2

×

𝑅

∫
0

𝐽𝑛𝔑

(
𝑏𝑛𝔑

𝑘
𝑟

𝑅

)
𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘′
𝑟

𝑅

)
2𝜋𝜏𝑟𝑑𝑟 = 𝛿𝑚,𝑚′ 𝛿𝑛,𝑛′ 𝛿𝑘,𝑘′ .

(B.15)

Due to the properties of complex exponentials and Bessel functions, we note that this condition is readily satisfied for distinct basis 
functions (i.e., when any of the conditions 𝑚 ≠ 𝑚′, 𝑛 ≠ 𝑛′, 𝑘 ≠ 𝑘′ hold). For the case 𝑚 = 𝑚′, 𝑛 = 𝑛′, 𝑘 = 𝑘′, we arrive at:

2𝜋𝜏𝐴2

𝔑

𝑅

∫
0

𝐽 2
𝑛𝔑

(
𝑏𝑛𝔑

𝑘
𝑟

𝑅

)
𝑟𝑑𝑟 = 1 , (B.16)

i.e.,

2𝜋𝜏𝐴2

𝔑
𝑅2

2
𝐽 2

𝑛𝔑+1
(
𝑏𝑛𝔑

𝑘

)
= 1 . (B.17)

Thus it follows that the normalization constant:

𝐴 =
√

𝔑
𝜋𝜏

1
𝑅𝐽𝑛𝔑+1

(
𝑏𝑛𝔑

𝑘

) , (B.18)

and that:

𝜉(𝑟) ≡ 𝜉𝑛,𝑘(𝑟) =
√

𝔑
𝜋𝜏

1
𝑅𝐽𝑛𝔑+1

(
𝑏𝑛𝔑

𝑘

) 𝐽𝑛𝔑

(
𝑏𝑛𝔑

𝑘

𝑅
𝑟

)
. (B.19)

Hence, the basis functions in our method have the form:

𝐹𝑚,𝑛,𝑘

(
𝜃1, 𝜃2, 𝑟

)
=
√

𝔑
𝜋𝜏

1
𝑅𝐽𝑛𝔑+1

(
𝑏𝑛𝔑

𝑘

) 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2) 𝐽𝑛𝔑

(
𝑏𝑛𝔑

𝑘
𝑟

𝑅

)
. (B.20)

Note that if the computational domain were an annular cylinder (as employed in [20,30]), instead of the solid cylinder considered 
here, the boundary conditions on the radial part of the wavefunction would be expected to change. For Dirichlet boundary conditions 
applied to the inner and outer walls of such an annular cylinder — often employed in simulations of large diameter nanotubes — 
Bessel functions of both kinds would be involved (i.e., 𝐴, 𝐵 ≠ 0 in eq. (B.9)) and the zeros of the cross products of Bessel functions 
[111] would be required.

Appendix C. Calculation of gradients

In electronic structure calculations, it can sometimes become necessary to compute the derivative of a quantity expressed using a 
chosen basis set, or over a grid. For instance, evaluation of the Hellmann-Feynman forces [112,113] on the atoms of a system involves 
calculation of Cartesian gradients, if atomic pseudopotentials and pseudocharges are used to compute total energies [30,40,43]. In 
this section, we describe how such gradients may be computed for quantities expressed using helical waves.

Let 𝐸(𝜃1, 𝜃2, 𝑟) be a function expressed in helical coordinates over the fundamental domain, and let its expansion using helical 
waves be:

𝐸
(
𝜃1, 𝜃2, 𝑟

)
=
∑
Γ

𝐸̂𝑚,𝑛,𝑘 𝐹𝑚,𝑛,𝑘(𝜃1, 𝜃2, 𝑟)

=
∑

𝐸̂𝑚,𝑛,𝑘 𝑐𝑚,𝑛,𝑘 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2) 𝐽𝑛𝔑

(
𝑏𝑛𝔑

𝑘
𝑟
)

. (C.1)
24

Γ 𝑅
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The Cartesian gradient of this quantity,

∇𝐸 = 𝜕𝐸

𝜕𝑥
𝐞X + 𝜕𝐸

𝜕𝑦
𝐞Y + 𝜕𝐸

𝜕𝑧
𝐞Z , (C.2)

may be evaluated by using the chain rule, i.e.:

𝜕𝐸

𝜕𝑥
= 𝜕𝐸

𝜕𝜃1

𝜕𝜃1
𝜕𝑥

+ 𝜕𝐸

𝜕𝜃2

𝜕𝜃2
𝜕𝑥

+ 𝜕𝐸

𝜕𝑟

𝜕𝑟

𝜕𝑥
= −

sin
(
2𝜋

(
𝛼𝜃1 + 𝜃2

))
2𝜋𝑟

𝐸𝜃2
+ cos

(
2𝜋

(
𝛼𝜃1 + 𝜃2

))
𝐸𝑟 ,

𝜕𝐸

𝜕𝑦
= 𝜕𝐸

𝜕𝜃1

𝜕𝜃1
𝜕𝑦

+ 𝜕𝐸

𝜕𝜃2

𝜕𝜃2
𝜕𝑦

+ 𝜕𝐸

𝜕𝑟

𝜕𝑟

𝜕𝑦
=

cos
(
2𝜋

(
𝛼𝜃1 + 𝜃2

))
2𝜋𝑟

𝐸𝜃2
+ sin

(
2𝜋

(
𝛼𝜃1 + 𝜃2

))
𝐸𝑟 ,

𝜕𝐸

𝜕𝑧
= 𝜕𝐸

𝜕𝜃1

𝜕𝜃1
𝜕𝑧

+ 𝜕𝐸

𝜕𝜃2

𝜕𝜃2
𝜕𝑧

+ 𝜕𝐸

𝜕𝑟

𝜕𝑟

𝜕𝑧
= 1

𝜏
(𝐸𝜃1

− 𝛼𝐸𝜃2
) . (C.3)

Based on eq. (C.1), we note immediately that:

𝐸𝜃1
(𝜃1, 𝜃2, 𝑟) =

∑
Γ

𝐸̂𝑚,𝑛,𝑘 (𝑖2𝜋𝑚)𝐹𝑚,𝑛,𝑘(𝜃1, 𝜃2, 𝑟) ,

𝐸𝜃2
(𝜃1, 𝜃2, 𝑟) =

∑
Γ

𝐸̂𝑚,𝑛,𝑘 (𝑖2𝜋𝑛𝔑)𝐹𝑚,𝑛,𝑘(𝜃1, 𝜃2, 𝑟) .
(C.4)

These expressions correspond to the inverse basis transforms of vectors with entries {(𝑖2𝜋𝑚) 𝐸̂𝑚,𝑛,𝑘}(𝑚,𝑛,𝑘)∈Γ and {(𝑖2𝜋𝑛𝔑) 𝐸̂𝑚,𝑛,𝑘}(𝑚,𝑛,𝑘)∈Γ
respectively, and so they may be readily computed. To calculate the radial derivative 𝐸𝑟 , we first note the following identity [67]:

𝜕𝐽𝜅 (𝑞)
𝜕𝑞

= 𝐽𝜅−1 (𝑞) −
𝜅

𝑞
𝐽𝜅 (𝑞) . (C.5)

This expression may be used for computing the radial derivative of all helical waves within the basis set. However, as 𝑛 varies from 
−𝑁𝑚𝑎𝑥 to 𝑁𝑚𝑎𝑥, the order of the Bessel functions involved range from 𝜅 = −𝔑𝑁𝑚𝑎𝑥 to 𝜅 =𝔑𝑁𝑚𝑎𝑥, and the above expression results 
in a Bessel function that lies beyond the range of the basis set. To remedy this, we may use the following alternate expression [67]

for the 𝜅 = −𝔑𝑁𝑚𝑎𝑥 case:

𝜕𝐽𝜅 (𝑞)
𝜕𝑞

= 𝜅

𝑞
𝐽𝜅 (𝑞) − 𝐽𝜅+1 (𝑞) . (C.6)

Combining eqs. (C.5) and (C.6) with eq. (C.1), we se that the radial derivative 𝐸𝑟 may be expressed as:

𝐸𝑟(𝜃1, 𝜃2, 𝑟) =
∑
Γ

𝐸̂𝑚,𝑛,𝑘 𝑐𝑚,𝑛,𝑘 𝑒𝑖2𝜋(𝑚𝜃1+𝑛𝔑𝜃2)𝑛(𝑟) , (C.7)

where the radial functions 𝑛(𝑟) are:

𝑛(𝑟) =
𝑏𝑛𝔑

𝑘

𝑅

[
𝐽𝑛𝔑−1

(
𝑏𝑛𝔑

𝑘
𝑟

𝑅

)
− 𝑛𝔑𝑅

𝑏𝑛𝔑
𝑘

𝑟
𝐽𝑛𝔑

(
𝑏𝑛𝔑

𝑘
𝑟

𝑅

)]
, for𝑛 ≠ 𝑁max ,

=
𝑏𝑛𝔑

𝑘

𝑅

[
𝑛𝔑𝑅

𝑏𝑛𝔑
𝑘

𝑟
𝐽𝑛𝔑

(
𝑏𝑛𝔑

𝑘
𝑟

𝑅

)
− 𝐽𝑛𝔑+1

(
𝑏𝑛𝔑

𝑘
𝑟

𝑅

)]
, for𝑛 = 𝑁max . (C.8)

With this, the radial derivative may be considered an inverse basis transform of the vector with entries {𝐸̂𝑚,𝑛,𝑘}(𝑚,𝑛,𝑘)∈Γ, provided 
we use the functions 𝑛(𝑟) along the radial direction. These functions may be computed ahead of time and stored, and Algorithm 1

(Section 3.4.1) may then be used for computing 𝐸𝑟(𝜃1, 𝜃2, 𝑟). With the derivatives 𝐸𝑟(𝜃1, 𝜃2, 𝑟), 𝐸𝜃1
(𝜃1, 𝜃2, 𝑟) and 𝐸𝜃2

(𝜃1, 𝜃2, 𝑟) available 
on hand as values on a real space grid, we may use eq. (C.3) to evaluate the Cartesian derivatives at each point on the same grid.

Instead of obtaining the derivatives as real space quantities as described above, it is also possible to directly obtain them in 
reciprocal space. The expansion coefficients of 𝐸𝜃1

and 𝐸𝜃2
are immediately seen to be:

(𝐸𝜃1
)𝑚′ ,𝑛′ ,𝑘′ =

(
𝑖2𝜋𝑚′) 𝐸̂𝑚′ ,𝑛′ ,𝑘′ ,

(𝐸𝜃2
)𝑚′ ,𝑛′ ,𝑘′ =

(
𝑖2𝜋𝑛′𝔑′) 𝐸̂𝑚′ ,𝑛′ ,𝑘′ , (C.9)

and they may be evaluated at a cost that is proportional to the basis set size. By considering the inner product of eq. (C.7) with the 
basis functions, the expansion coefficients of the radial derivative may be expressed as:

(𝐸𝑟)𝑚′ ,𝑛′ ,𝑘′ =
⟨
𝐸𝑟, 𝐹𝑚′ ,𝑛′ ,𝑘′

⟩
L2() =

2
𝑅

∑
Γ

𝐸̂𝑚′ ,𝑛′ ,𝑘 (𝑛′, 𝑘, 𝑘′) . (C.10)

The numbers (𝑛′, 𝑘, 𝑘′) can be expressed in terms of oscillatory integrals:

(
𝑛′, 𝑘, 𝑘′

)
= 1( ) ( )[𝑏𝑛′𝔑

𝑘

1

𝐽𝑛′𝔑−1

(
𝑏𝑛′𝔑

𝑘
𝑞
)

25

𝐽𝑛′𝔑+1 𝑏𝑛′𝔑
𝑘

𝐽𝑛′𝔑+1 𝑏𝑛′𝔑
𝑘′

∫
0
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Fig. D.18. The highly oscillatory behavior of the integrand involved in the evaluation of the quantity (𝑛′ , 𝑘, 𝑘′) in eq. (31). The behavior increases as the values of 
𝑛, 𝑘, 𝑘′ increase. For the above plot, we chose 𝑛 =−98, 𝑘 = 89, 𝑘′ = 85.

× 𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘′
𝑞
)

𝑞 𝑑𝑞 − 𝑛′𝔑

1

∫
0

𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘
𝑞
)

𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘′
𝑞
)

𝑞
𝑞 𝑑𝑞

]
, for𝑛′ ≠ −𝔑𝑁𝑚𝑎𝑥 (C.11)

= 1

𝐽𝑛′𝔑+1
(
𝑏𝑛′𝔑

𝑘

)
𝐽𝑛′𝔑+1

(
𝑏𝑛′𝔑

𝑘′

)[𝑛′𝔑

1

∫
0

𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘
𝑞
)

𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘′
𝑞
)

𝑞
𝑞 𝑑𝑞

− 𝑏𝑛′𝔑
𝑘

1

∫
0

𝐽𝑛′𝔑+1

(
𝑏𝑛′𝔑

𝑘
𝑞
)

𝐽𝑛′𝔑

(
𝑏𝑛′𝔑

𝑘′
𝑞
)

𝑞 𝑑𝑞

]
, for𝑛′ = −𝔑𝑁𝑚𝑎𝑥 . (C.12)

We may precompute them using the techniques described in Appendix D and store them for use later. Note that such an expansion of 
the radial derivatives using the basis set implicitly requires these quantities to obey Dirichlet boundary conditions at 𝑟 = 𝑅. However, 
this may not be satisfied in general. The real space expression outlined earlier (eqs. (C.7), (C.8)) skirts this issue.

Appendix D. Evaluation of oscillatory radial integrals

This work has multiple instances in which integrals with oscillatory integrands along the radial direction make an appearance 
(e.g., eq. (31) and eqs. (C.11), (C.12)). A typical scenario is depicted in Fig. D.18. Techniques for the evaluation of such integrals 
have been extensively studied in the literature [114–117] and specialized methods for integrands involving Bessel functions are 
also available [118]. Instead of adopting these more elaborate methods, we choose to evaluate the oscillatory integrals in this work 
by using the simpler procedure of employing a large number of Gauss-Jacobi quadrature [119] nodes and weights. Thus, denoting 
𝑞 = 𝑟∕𝑅, we write:

1

∫
0

𝑓 (𝑞)𝑞𝜎 𝑑𝑞 =
𝑁𝑞∑
𝑖=1

𝑓 (𝑞𝑖)𝑤𝑖 . (D.1)

The values of the weights 𝑤𝑖 and the nodes 𝑞𝑖 dependent on the exponent 𝜎, as well as the quadrature order 𝑁𝑞 . The weights and 
nodes can be computed inexpensively [120] even when 𝑁𝑞 is of the order of a few thousand.

For the case of the integrals involved in the evaluation of (𝑛′, 𝑘, 𝑘′) via eq. (31), the number of oscillations of the integrand is 
approximately equal to 𝑘 + 𝑘′. Thus, within a given basis set, the maximum number of oscillations is 2𝐾max. For all the examples 
considered in this work, 𝐾max does not generally exceed 200, and we have found that choosing 𝑁𝑞 to be a few thousand for such cases 
allows the integrals to be converged to (10−14). To verify our calculations, we have also used Gauss-Kronrod quadrature [121,122]

as employed within Matlab (quadgk function). This allows for automatic adaptive placement of the integration nodes and monitoring 
of the quadrature error, and we verified that the latter was always (10−13) or lower, even for the cases involving the most oscillatory 
integrands.
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