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A B S T R A C T

In recent years, van der Waals (vdW) heterostructures and homostructures, which consist of stacks of two-
dimensional (2D) materials, have risen to prominence due to their association with exotic quantum phenomena
originating from correlated electronic states harbored by them. Atomistic scale relaxation effects play an
extremely important role in the electronic scale quantum physics of these systems, providing means of
manipulation of these materials and allowing them to be tailored for emergent technologies. We investigate
such structural relaxation effects in this work using atomistic and mesoscale models, within the context of
twisted bilayer graphene — a well-known heterostructure system that features moiré patterns arising from
the lattices of the two graphene layers. For small twist angles, atomic relaxation effects in this system are
associated with the natural emergence of interface dislocations or strain solitons, which result from the cyclic
nature of the generalized stacking fault energy (GSFE), that measures the interface energy based on the
relative movement of the two layers. In this work, we first demonstrate using atomistic simulations that atomic
reconstruction in bilayer graphene under a large twist also results from interface dislocations, although the
Burgers vectors of such dislocations are considerably smaller than those observed in small-twist systems. To
reveal the translational invariance of the heterointerface responsible for the formation of such dislocations,
we derive the translational symmetry of the GSFE of a 2D heterostructure using the notions of coincident
site lattices (CSLs) and displacement shift complete lattices (DSCLs). The workhorse for this exercise is a
recently developed Smith normal form bicrystallography framework. Next, we construct a bicrystallography-
informed and frame-invariant Frenkel–Kontorova model, which can predict the formation of strain solitons in
arbitrary 2D heterostructures, and apply it to study a heterostrained, large-twist bilayer graphene system. Our
mesoscale model is found to produce results consistent with atomistic simulations. We anticipate that the model
will be invaluable in predicting structural relaxation and for providing insights into various heterostructure
systems, especially in cases where the fundamental unit cell is large and therefore, atomistic simulations are
computationally expensive.
. Introduction

Quantum materials, i.e., materials that manifest exotic physical
roperties due to the presence of strong electronic correlations, have
isen to prominence in recent years due to their applications in emer-
ent technologies connected to nanoelectronics and quantum informa-
ion science (Basov et al., 2017; Keimer and Moore, 2017; Tokura et al.,
017). The grand challenge of designing and manufacturing such mate-
ials stems from the high sensitivity of their properties to local structure
nd symmetry (Kim et al., 2022). In recent years, van der Waals (vdW)
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1 If the two lattices of a heterostructure are subjected to uniform deformation gradients 𝑭 1 and 𝑭 2, then 𝑭 −1
1 𝑭 2 is the relative deformation, and its representation

s a 2 × 2 matrix accounts for the four dimensions.

homostructures and heterostructures, which consist of stacks of two-
dimensional (2D) materials, have emerged as an important class of
quantum materials (Shimazaki et al., 2020; Jin et al., 2019; Cao et al.,
2021; Regan et al., 2020). The weak vdW interactions between the
2D lattices in such materials offer high fidelity in tuning the local
atomic environments, thus allowing exquisite control over the quantum
properties of such systems. Small-twist bilayer graphene (BG) is the
most prominent example, wherein dispersionless electronic states (or
flat bands) emerge (Bistritzer and MacDonald, 2011; Tarnopolsky et al.,
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2019; Cao et al., 2018; Tao et al., 2022; Zhao et al., 2020, 2021) at a
specific magic twist angle, 𝜃 ∼ 1.1◦. Magic-angle twisted BG exhibits
unconventional superconductivity, correlated insulator phases, mag-
netism, and non-trivial topological phases (Papageorgiou et al., 2017;
Lee et al., 2019; Cao et al., 2020; Rakib et al., 2022; Uri et al., 2020;
Wong et al., 2020) — properties associated with the moiré superlattice
formed by the constituent 2D lattices. However, such exotic properties
are susceptible to perturbations in the twist angle. Since the relative
twist between adjoining lattices constitutes only a one-dimensional
subspace of the four-dimensional space of relative deformations,1 we
ecognize that the larger collection of relative deformation-induced
oiré is an exciting test bed to explore new moiré physics. A vdW
eterostructure is said to be heterostrained if its two lattices are under
ifferent strain states (Pochet et al., 2017). In this paper, we refer to the
utually exclusive twisted and heterostrained states using an umbrella

erm, heterodeformation. The use of heterostrains to tune the electronic
roperties of materials and explore new quantum states is the goal of
traintronics (Miao et al., 2021), an emerging research area.

Homostructures such as BGs, under a small twist (1◦–3◦) relative to
he energetically favorable AB stacking, undergo atomic reconstruction
ue to spontaneous nucleation of interface dislocations, also referred to
s strain solitons. Recognizing the sensitivity of the electronic properties
o atomic rearrangements, strain engineering offers an exciting route to
odulate the electronic properties of BGs by controlling the dislocation
etwork using strains (Annevelink et al., 2020; Cazeaux et al., 2023;
ao et al., 2021; Kim et al., 2022; Kazmierczak et al., 2021). The
verarching goal of this paper – formulated to fully realize the potential
f strain engineering for 2D heterostructures – is to investigate and model
tomic reconstruction in heterodeformed moiré superlattices. Moreover, due
o the large size of moiré superlattices, a high-throughput investigation
f heterodeformations is computationally challenging, which motivates
s to seek a continuum model for atomic reconstruction. In what
ollows, we will identify the key features of atomic reconstruction
bserved in small-twist BG before formulating the objectives of this
aper.

The atomic reconstruction (Annevelink et al., 2020; Zhang and
admor, 2017, 2018; Lopes dos Santos et al., 2012; Carr et al., 2018b;
azeaux et al., 2020, 2023; Gargiulo and Yazyev, 2017; Zhou et al.,
015) in a small-twist BG is a consequence of the interplay between
nterfacial energy and the elastic energies of the two lattices. The
ormer is often described using the generalized stacking fault energy
GSFE) density, a periodic function of relative translations between
he two AB-stacked lattices of the BG. The periodicity of the GSFE is
erived from the bicrystallography of the interacting lattices. Under
mall twists relative to the AB stacking, the interfacial energy increases
s the induced relative translations between the two lattices lead to
egions of low-commensurability (high interfacial energy) interspersed
ith the highly commensurable AB stacking. The twisted BG responds

o lower the interfacial energy by an atomic rearrangement that tends
o increase (decrease) areas of high (low) commensurability. Due to
he periodicity of the GSFE, the structural relaxation results in lines of
isplacement ‘‘jumps’’ that manifest as interface dislocation lines with
he displacement ‘‘jump’’ as the Burgers vector (Alden et al., 2013;
umar et al., 2016). Moreover, the Burgers vectors are parallel to the
islocation lines and their magnitude is equal to that of the smallest
attice vector of graphene. Therefore, the structural relaxation in a
mall-twist BG can be interpreted as elastic distortions associated with
he formation of an array of screw lattice dislocations. Since the elastic
nergy diverges for discontinuous displacements, the ‘‘jumps’’ occur as
ocalized displacement gradients, which implies the dislocation lines
re diffused. The balance between the interfacial and elastic energies,
hich ultimately determines the network and the thickness of the
islocation lines, is at the core of the Frenkel–Kontorova continuum
odel for small-twist BGs. In this paper, the terms ’atomic relaxation’
2

nd ’structural relaxation’ are used synonymously. t
Our study of atomic reconstruction in heterodeformed moiré is
uided by the energetics of structural relaxation in small-twist BGs.
e begin by hypothesizing that the structural relaxation of a het-

rodeformed moiré is also a consequence of interface dislocations and
nvestigating the hypothesis using atomistic simulations. Instead of

bona fide 2D heterostructure, we use large-twist BG in our atom-
stic study due to the greater reliability of its interatomic potential,
onfirmed using Density Functional Theory (DFT). Moreover, it is
easonable to interpret a large-twist BG as a heterostructure since its
attices differ considerably. We show that the 21.786789◦ large-twist
G, when subjected to heterostrains, results in strain localization in
network of lines, suggesting the formation of interface dislocations.

nterestingly, the Burgers vector of the dislocations is smaller than that
f the small-twist case.

In the presence of two distinct lattices, the notion of an interface
islocation has to be made precise as it is not clear to which lattice its
urgers vector belongs. The interpretation of a large-twist moiré as a
etwork of lattice screw dislocations breaks down as the dislocation
ores overlap. To resolve this ambiguity, we turn our attention to
rain/phase boundaries. Similar to a small-twist BG, small-tilt angle
rain boundaries can be interpreted as an array of lattice dislocations.
or large tilt angles, however, a grain boundary dislocation is defined
s a defect in the translation invariance of the boundary (Grimmer
t al., 1974). The translational invariance is derived by introducing two
dditional lattices – coincident site lattice (CSL) and the displacement
hift complete lattice (DSCL) – originating from bicrystallography (Bal-
uffi et al., 1982). The CSL is the intersection of the two lattices, and
he DSCL is the smallest lattice that contains the two lattices. In 2D
eterostructures, it is straightforward to see that the CSL is the moiré
uperlattice. On the other hand, the DSCL conveys the translational
nvariance of the interface — displacing one lattice relative to the
ther by a DSCL vector preserves the structure of the interface. In
ther words, if a heterointerface hosts a dislocation, its Burgers vector
ust be a DSCL vector. While Koda et al. (2016) have used the CSL

o identify heterodeformed moirés, the use of DSCL to study interface
islocations remains largely unexplored.2 One of the key highlights of
his paper is the application of Smith Normal Form (SNF) bicrystallog-
aphy to characterize interface dislocations. SNF bicrystallography is an
lgebraic framework developed by the last authors’ group to explore
icrystallography properties such as the translational invariance (Ad-
al et al., 2022). In particular, it informs us that the Burgers vector

smallest DSCL lattice vector) is inversely proportional and a rational
ultiple of a CSL vector.

Based on the atomistic simulations of heterodeformed BG and the
NF bicrystallography framework, we build a generalized Frenkel–
ontorova (GFK) model. The generalization relative to the classical
renkel–Kontorova model stems from key features of the GFK model

frame-invariance and defect-free natural configurations, which may
nclude stackings that are not necessarily of the lowest energy.3 The
FK model generalizes the previous model of Nam and Koshino (2017)

o large heterodeformations, including large twists. Unlike the model
f Nam and Koshino (2017), which was developed exclusively for
nfinite systems, the model describes finite systems as well, wherein
onfigurational forces due to surface tension play an important role.

This paper is organized as follows. In Section 2, we explore struc-
ural relaxation in a BG subjected to large heterodeformations using
FT-informed atomistic simulations and demonstrate the nucleation of

nterface dislocations. In Section 3, we review SNF bicrystallography

2 A notable exception is the work of Ishikawa et al. (2016) where the DSCL
nd the moiré superlattice are used to infer the atomic structure of twisted
ew-layer graphene, which is in the spirit of moiré metrology (Annevelink et al.,
021).

3 For example, in addition to the AB-stacked BG, a large-twist BG with a
◦
wist angle of 21.786789 is also a natural configuration.
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Table 1
Two parameterizations of the KC potential. The KC-2 model is more suitable for a BG system under an out-of-plane compression.

𝐶 [meV] 𝐶0 [meV] 𝐶2 [meV] 𝐶4 [meV] 𝐴 [meV] 𝛿 [Å] 𝜆 [Å
−1
] 𝑧0 [Å]

KC-1 3.030 15.71 12.29 4.933 10.238 0.578 3.629 3.34
KC-2 6.678 908 × 10−4 21.847 167 12.060 173 4.711 099 12.660 270 0.771 810 1 3.143 921 3.328 819
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and apply it to characterize the interface dislocations in heterode-
formed BGs. In Section 4, we build the GFK model and implement and
validate it in Section 5. We summarize and conclude in Section 6.

Notation. We use lowercase bold letters to denote vectors, and up-
percase bold letters to denote second-order tensors, unless stated oth-
erwise. The gradient, divergence, and curl operators are denoted by the
symbols ∇, Div, and curl respectively. We use the symbol ⊗ to denote
the tensor product of two vectors, and ⋅ to denote the inner product of
two vectors or tensors.

2. Atomic scale investigation of structural relaxation under large
heterodeformations

This section investigates the structural relaxation of 2D heterostruc-
tures using atomistic simulations of heterostrained BG, with the under-
standing that under large twists, a BG serves as a surrogate for a 2D het-
erostructure. The relaxation is restricted to being in-plane. Simulations
are performed using Large-Scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) (Plimpton, 1995). Beginning with a small-twist
BG, we systematically explore various small and large heterodefor-
mations that result in atomic reconstruction. We will demonstrate
that atomic reconstruction due to large heterodeformations results
from interface dislocations, whose Burgers vector and the network are
markedly different from those observed under small twists. We will
revisit the examples of this section in Section 4 using a continuum
model.

The simulated BGs are oriented such that the normal to the lattices
is along the 𝑋3 direction. Since we allow only in-plane relaxation,
the distance between the two graphene lattices is held fixed dur-
ing the simulation. The intralayer bonding in each graphene sheet
is modeled using the reactive empirical bond order (REBO) poten-
tial (Brenner et al., 2002). The interlayer vdW interaction is described
using the registry-dependent Kolmogorov–Crespi (KC) potential (Kol-
mogorov and Crespi, 2005). We investigate structural relaxation for two
parametrizations of the KC potential, denoted as KC-1 (Kolmogorov and
Crespi, 2005) and KC-2 (Ouyang et al., 2018) with parameters listed in
Table 1. Since the KC-2 model was developed for BG systems under
an out-of-plane compression, it may be viewed as an improvement
of the KC-1 model. We will, however, explore both KC-1 and KC-2
models while investigating large heterodeformations as the qualitative
differences in the respective GSFEs lead to markedly different structural
relaxations. The reference interplanar distance is chosen as 3.34Å,
and any change to the interlayer spacing will be described as an
out-of-plane strain relative to the reference spacing.

Periodic boundary conditions (PBCs) are imposed along two in-
plane directions to avoid the influence of free boundary lines. Since
PBCs necessitate the existence of a periodic supercell, we are restricted
to bilayer configurations wherein the intersection of the projections (on
the 𝑋1 − 𝑋2 plane) of the two lattices is a 2D superlattice. In other
words, PBCs can be enforced if and only a CSL exists. The process of
identifying heterodeformations that admit PBCs can be formalized as
follows. Two 2D (multi) lattices 𝒜 and ℬ, with structure matrices4 𝑨
and 𝑩, respectively, are coincident on a 2D CSL if and only if 𝑻 ∶=
𝑨−1𝑩 is a rational matrix. We refer to 𝑻 as the transition matrix. In a
homostructure, if lattice ℬ is obtained by deforming lattice 𝒜 using a

4 The two basis vectors of a lattice are stored as columns of its structure
atrix.
3

a

deformation gradient 𝑭 , then 𝑩 = 𝑭𝑨, and all deformations that result
in a rational 𝑨−1𝑭𝑨 yield a CSL, and therefore, amenable to PBCs.
In Section 3 we will show that the bicrystallographic properties of a
heterodeformed moiré can be deduced from the algebraic properties
of the transition matrix. For example, the ratios of the areas of the
primitive unit cells —

𝛴𝒜 = Area(CSL)
Area(𝒜 )

, 𝛴ℬ = Area(CSL)
Area(ℬ)

, (1)

are always integers, and if 𝒜 and ℬ have the same density, 𝛴𝒜 =
ℬ =∶ 𝛴. The two basis vectors of the CSL of a heterodeformed
oiré are chosen as the in-plane simulation box vectors. Therefore, the
umber of simulated atoms is equal to 𝑛𝒜𝛴𝒜+𝑛ℬ𝛴ℬ , where the factors

𝑛𝒜 and 𝑛ℬ represents the number of basis atoms in the primitive unit
cells of the respective 2D multilattices. In all our simulations, 𝒜 is a
graphene lattice formed by the structure matrix

𝑨 = 𝑎
2

[

0 −
√

3
2 −1

]

,

nd ℬ is a deformation or rotation of 𝒜 , and placed at a prescribed
nterplanar distance in the 𝑋3 direction from 𝒜 . The heterodeformed
onfigurations studied in this paper are calculated using an algorithm
see Algorithm 2 in Admal et al. (2022)) derived from Theorem 2 in
ppendix A, which generates heterostrained moirés of various sizes and
trains within prescribed upper bounds.

Atomic reconstruction is simulated by minimizing the total energy
ith respect to in-plane displacements of atoms using the fast inertial

elaxation engine (FIRE) algorithm (Bitzek et al., 2006) with an en-
rgy tolerance and force tolerance of 1 × 10−20 eV and 1 × 10−20 eVÅ−1,
espectively. The resulting displacements of atoms are analyzed to
nterpret them in terms of interface dislocations.

.1. Atomic reconstruction in a BG under a small twist and a small strain

In this section, we present simulations of atomic reconstruction in a
G under two small heterodeformations — (a) a 0.29926342507◦ twist
nd (b) a pure stretch of

=
[

1.004219 0
0 0.995781

]

(2)

elative to the AB-stacked 𝛴1 configuration. Since the AB-stacked con-
iguration corresponds to 𝑭 = 𝑹(60◦), lattice ℬ of the 0.29926342507◦-
wisted BG is constructed using 𝑭 = 𝑹(60.29926342507◦), and for the
eterostrained case, 𝑭 = 𝑹(60◦)𝑼 . The interplanar distance is fixed at
he reference distance of 3.34Å. The basis vectors of the corresponding
SLs,

twist: 𝒃1 = 470.824979 𝒆1, 𝒃2 = 235.412488 𝒆1 + 407.746391 𝒆2, and
(3a)

eterostrain: 𝒃1 = −581.794 𝒆1, 𝒃2 = −287.199 𝒆1 + 505.965 𝒆2, (3b)

define the respective periodic boxes of the simulations. From (1) and
3), it follows that 𝛴 = 36 631 for the 0.29926342507◦-twisted BG,
hereas 𝛴𝒜 = 56 168 and 𝛴ℬ = 56 169 for the heterostrained BG.

The color density plots of atomic energy density shown in Figs. 1(a)
nd 1(c) highlight the triangular dislocation network in the twisted and
trained BGs, respectively. The high-energy nodal regions correspond
o the AA stacking, and the interiors of the triangular domains are in
B stacking. Figs. 1(b) and 1(d) show line plots of displacements of

toms along the dashed lines in the respective energy density plots. The



Mechanics of Materials 190 (2024) 104903M.T. Ahmed et al.
Fig. 1. Atomic reconstruction in a BG under a small twist (top row) and a small heterostrain (bottom row). (a), (c) Plots of atomic energy density [meVÅ
−2

] show a triangular
network of interface dislocations. The dislocation lines separate triangular domains of low-energy AB-stacking. (b), (d) Line plots of the displacement components 𝑢1 and 𝑢2,
measured along the dashed lines in (a) and (c). The displacements are measured relative to the untwisted AB-stacked configuration.
Fig. 2. GSFE of AB stacking in meVÅ
−2

. The minima and maxima correspond to the AB
and AA stackings, respectively. Parametrizations KC-1 and KC-2 yield nearly identical
GSFEs.

displacements are measured relative to the AB-stacking. Since Fig. 1(b)
shows negligible displacement perpendicular to the dislocation line,
interface dislocations in the twisted BG have a screw character. On
the other hand, Fig. 1(d) suggests the interface dislocations in the
heterostrained case have a mixed character. In both cases, the Burgers
vector magnitude (size of the displacement jump) is < 2.46Å, the
lattice constant of graphene, which implies the dislocations are not
full dislocations. Annevelink et al. (2020) and Pochet et al. (2017)
demonstrated that the partial dislocations have a pure edge character
under a small biaxial heterostrain relative to the AB stacking.

The origin of interface dislocations and their network pattern can
be traced to the properties of AB-stacking’s GSFE, shown in Fig. 2.
The GSFE of a BG configuration is a function of the relative displace-
ment between the two layers. The GSFE of AB stacking is periodic
4

with respect to the lattice vectors of graphene. Under small uniform
heterodeformations, the relative displacement between the two layers is
spatially varying, and therefore, the interfacial energy is sampled from
various regions of the GSFE, including the maxima and the minima. The
BG responds by an atomic rearrangement to increase (decrease) regions
of AB (AA) stacking, which corresponds to minima (maxima) in the
GSFE plot, resulting in a juxtaposition of AB-stacked regions separated
by dislocation lines. The Burgers vector of a dislocation line separating
two AB-stacked regions is the relative vector, with magnitude 1.42Å,
that connects the corresponding minima in the GSFE.5 Moreover, the
triangular network of dislocation lines with every AB-stacked region
surrounded by three similar regions originates from the observation
that each minimum in the GSFE is surrounded by three nearest minima.

The arguments that helped us deduce the properties of dislocations
from the GSFE are applicable only under small heterodeformations rel-
ative to the AB stacking. Under large heterodeformations, it is not clear
if a heterostructure undergoes atomic reconstruction. If reconstruction
occurs, its interpretation in terms of full/partial lattice dislocations
breaks down as the dislocation cores overlap.6

2.2. Atomic reconstruction in a BG under large heterodeformations

It is well known that as the twist angle of a BG increases beyond
a few degrees, the vdW interaction between the two lattices weakens,

5 Fig. 1(b) does not quite recover the entire Burgers vector magnitude
of 1.42Å as it includes displacements associated with elastic relaxation. In
Section 4, where we present our continuum model, we will discuss the
procedure to accurately measure the Burgers vector from the displacement
field.

6 As the heterodeformation is measured relative to the AB stacking, the
density of interface dislocations increases resulting in dislocation core overlap.
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Fig. 3. (a) A comparison of interfacial energy density versus the twist angle of an unrelaxed BG under a 0% and a 10% out-of-plane compression, computed using the KC-1
potential. (b) A similar comparison in the neighborhood of the 𝛴7 configuration using the KC-2 potential. The 𝛴7 interfacial energy for each out-of-plane compression was
subtracted. (c) Atomic energy density [meVÅ

−2
] within a fundamental unit cell of the 𝛴7 configuration, computed using the KC-1 potential. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
resulting in negligible structural relaxation (Annevelink et al., 2020;
Morovati et al., 2022). Signatures of the presence or absence of in-
terface dislocations can also be found in the plot of interface energy
versus the twist angle, shown in Fig. 3(a). For small twist angles relative
to the AB stacking, the interface energy variation (gray plot) is non-
convex — a signature for potential defect nucleation. In contrast, for
large twist angles, the interfacial energy is insensitive to the twist angle,
and this justifies the absence of atomic reconstruction. While Fig. 3(a)
explores only twists – as opposed to heterodeformations – it is plausible
that atomic reconstruction does not occur in heterodeformed config-
urations far from the AB and AA stackings. However, by decreasing
the interlayer distance using external pressure, the interlayer electronic
coupling can be made to persist for certain large twist angles. Indeed,
this strategy follows the historical trend of using external pressure to
probe correlated electron physics. For example, the role of interlayer
compression on the atomic reconstruction of 2D heterostructures has
been shown to have a substantial influence on the band structure (Carr
et al., 2018a; Chittari et al., 2018; Das et al., 2016) and transport
properties (Bistritzer and MacDonald, 2010). Moreover, experiments
and first principle calculations (Hamer et al., 2022; Cheng et al., 2023)
have shown that electronic scale effects are modified in large-twist
bilayer graphene under out-of-plane compression. The blue plot in
Fig. 3(a) shows that under a 10% out-of-plane strain, the interfacial
energy from the KC-1 model has a local minimum at 21.786789◦ and
is sensitive to twist angles in the neighborhood of 21.786789◦. We
will refer to the 21.786789◦-twist BG as the 𝛴7 configuration. More
interestingly, the variation is non-convex in a neighborhood of 𝛴7
twist. A similar trend can be noted for the KC-2 parametrization from
5

Fig. 3(b). However, comparing Figs. 3(a) and 3(b), we note that the
energy drop at the 𝛴7 twist under a given out-of-plane compression
is lower for the KC-2 model compared to the KC-1 model. Due to the
presence of a local energy minimum at the 21.786789◦ we view the
𝛴7 configuration, in addition to the 𝛴1 configuration, as energetically
favorable. Moreover, there is experimental and numerical evidence (Pal
et al., 2019; Inbar et al., 2023) of correlated electronic properties at the
21.786789◦ twist angle. Fig. 3(c) shows the atomic energy densities of
the 28 atoms in the unit cell of the 𝛴7 configuration.

The non-convexity of the interfacial energy in the neighborhoods
of 𝛴1 and 𝛴7 configurations motivates us to hypothesize that atomic
reconstruction occurs for small heterodeformations relative to the 𝛴7
configuration in the presence of an out-of-plane compression. To inves-
tigate our hypothesis, we simulate the following two heterodeforma-
tions relative to the 𝛴7 configuration — (a) a 0.170076◦ twist and (b)
a pure stretch of

𝑼 =
[

1.010589 0
0 0.997163

]

. (4)

In other words, the heterodeformations are given by 𝑭 = 𝑹
(81.95686492519◦) for the former, and 𝑭 = 𝑹(81.786789◦)𝑼 for the latter
case. The box vectors in the two simulations are

twist: 𝒃1 = 313.233 𝒆1, 𝒃2 = 156.616 𝒆1 + 271.267 𝒆2, and (5a)

heterostrain: 𝒃1 = 320.679 𝒆1, 𝒃2 = 1.04735 𝒆1 + 548.127 𝒆2, (5b)

which imply 𝛴 = 16213, and 𝛴𝒜 = 33539 and 𝛴ℬ = 33282,
respectively. In what follows, the above two heterodeformations are
investigated using the KC-1 model with an out-of-plane compression
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Fig. 4. Atomic reconstruction in a large-twist (21.786789◦ + 0.170076◦) BG using the KC-1 (top row) and the KC-2 (bottom row) models. (a), (c) Plots of atomic energy density
[meVÅ

−2
] show a honeycomb and a triangular network of interface dislocations. (b), (d) Line plots of the displacement components 𝑢1 and 𝑢2, measured along the dashed lines

in (a) and (c). The displacements are measured relative to the untwisted 𝛴7 configuration.
of 26% and the KC-2 model with an out-of-compression of 39%. The
rationale for choosing different out-of-plane compressions is that the
energy drop at the 𝛴7 twist angles is approximately equal for the two
choices, and further justification is provided at the end of Section 3.
A plot of the out-of-plane stress vs strain shown in Fig. E.17 suggests
that a 40% compression requires an out-of-plane stress of 300GPa. In
practice, such high pressures can be exerted using a nano Diamond
Anvil Cell (Dubrovinsky et al., 2012; Pei et al., 2022), which can exert
normal pressures up to 680GPa.

Fig. 4 shows results of the large-twist simulations using the KC-1
(Figs. 4(a) and 4(b)) and KC-2 (Figs. 4(c) and 4(d)) models. Comparing
the color density plots of atomic energy density in Figs. 4(a) and 4(c),
we note that the KC-1 model yields a honeycomb interface dislocation
network, while KC-2 results in a triangular network, similar to the small
twist case (Fig. 1(a)). The atomic arrangement in the interiors of the
triangular and hexagonal domains is that of the 𝛴7 stacking. The plots
in Figs. 4(a) and 4(c) are of the atomic energy density relative to the
total energy density of the 𝛴7 stacking. Therefore, we expect the energy
density in the interior of the triangular/hexagonal domains to be zero.
Figs. 4(a) and 4(c), however, do not reflect this due to the variation
in the energy densities of the 28 atoms in the primitive unit cell of the
𝛴7.7

To identify the nature of the interface dislocations, we plotted
(Figs. 4(b) and 4(d)) the displacements of atoms along the dashed lines
in Figs. 4(a) and 4(c). The displacements are measured relative to the
untwisted 𝛴7 stacking. The displacement line plots show negligible
displacement perpendicular to the vertical dislocation line, suggesting
a screw character. Moreover, the displacement ‘‘jumps’’ suggest the
Burgers vector magnitude is ≪ than that of the partial dislocations,
noted in Section 2.1. Interestingly, the Burgers vector of dislocations
from the KC-1 model is larger than those from the KC-2 model, and
the dislocations have a narrower width in the former model. For larger
out-of-plane compression, the non-convexity of the interfacial energy

7 In other words, if the energy densities in Figs. 4(a) and 4(c) were spatially
averaged using a weighting function with a 𝛴7 unit cell-shaped averaging
domain, the resulting fields will be zero in the domain interiors.
6

Fig. 5. Burgers Vector for 21.786789◦ + 0.170076◦ twisted BG at different magnitudes
of out-of-plane compression calculated using the KC-1 parametrization.

increases in the neighborhood of 𝛴7. Therefore, we expect sharper
displacement ‘‘jumps’’, which is confirmed in Fig. 5.

Fig. 6 shows simulation results of a BG under large heterodeforma-
tion. Similar to the large twist case, we observe interface dislocations
that form a distorted triangular network surrounding regions of 𝛴7
stackings. In addition, the displacement line plots along the dashed
line in Fig. 6(a) suggest the dislocations have both screw and edge
components, similar to heterostrained BG in Fig. 1(c).

Summarizing, this section conclusively demonstrates that atomic
reconstruction occurs when a 𝛴7 BG is subjected to small heterode-
formations.8 Analogous to the AB-stacking, the 𝛴7 configuration is
energetically favorable and defect-free. When the 𝛴7 configuration is
subjected to a small heterodeformation, atomic reconstruction ensues

8 Note that while the heterodeformation is small relative to the 𝛴7
configuration, it is large relative to the AB stacking.
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Fig. 6. Atomic reconstruction under a large heterodeformation. (a) Color density plot of atomic energy density [meVÅ
−2

] highlighting the network of interface dislocations in
a BG heterodeformed relative to the untwisted 𝛴7 configuration using KC-2 parametrization. (b) A magnified view of the dislocation network in (a). (c) shows variations of the
displacement components along the dashed line 1, shown in (a). The displacements are measured relative to the 𝛴7 configuration.
through strain localization along a network of lines, which we interpret
as dislocations. However, we are yet to identify the crystallographic
origin of the observed dislocations and their relatively short Burgers
vector. In the next section, we will present SNF bicrystallography,
an algebraic framework to study the geometric properties of moiré
superlattices. In particular, we will apply SNF to arrive at a rigor-
ous definition for interface dislocations that is applicable across all
heterodeformations.

3. Bicrystallography and interface dislocations

The goal of this section is to define interface dislocations in 2D
heterostructures, including homostructures, under large heterodefor-
mations. An interface dislocation is a line defect that breaks the trans-
lational invariance of a defect-free interface. Low-energy configurations,
such as 𝛴1 and 𝛴7 interfaces in a twisted BG, are considered defect-
free. In what follows, we will describe a framework to characterize
the translational invariance of defect-free interfaces, which ultimately
yields the set of interface dislocations a heterointerface can host. Recall
from Section 2.1 that the Burgers vector of interface dislocations,
formed due to a small heterodeformation of the AB stacking, originates
from the GSFE of the AB-stacking. In particular, the periodicity of
the GSFE conveys the translational invariance of the interface. This
motivates us to investigate the GSFE of the 𝛴7 interface. We use SNF
bicrystallography to identify the periodicity of GSFE of a defect-free
heterointerface and use it to identify interface dislocations in the 𝛴7
configuration. In what follows, we describe the main results of SNF
bicrystallography. For further details, we refer the reader to Algorithm
Appendix B and Admal et al. (2022).

SNF bicrystallography is a framework that utilizes the Smith normal
form for integer matrices to analyze the bicrystallography of crystal
interfaces. It was developed by Admal et al. (2022) to enumerate
disconnections (dislocations with a step height) in grain boundaries
of simple lattices. Due to the generality of the SNF framework, it is a
powerful tool to analyze defects in heterostructures. The open Interface
Lab (oILAB), a C++ dimension-independent implementation of SNF
bicrystallography archived at https://github.com/oilab-project/oILAB.
git, was used to generate the heterostructures studied in this paper.
The framework begins with two lattices 𝒜 and ℬ – with respective
structure matrices 𝑨 and 𝑩 – that overlap on a lattice 𝒞 ∶= 𝒜 ∩ ℬ,
called the coincident site lattice. In the context of this paper, 𝒜 and
ℬ are 2D multilattices, and 𝒞 is a moiré superlattice, which we will
assume to be 2D as well. A key step in SNF bicrystallography is the
transformation of basis vectors of lattices such that the new basis
vectors of the lattices, collected in structure matrices 𝑨∥, 𝑩∥, and 𝑪∥,
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are parallel. This transformation makes it straightforward to introduce
a fourth lattice 𝒟 , called the displacement shift complete lattice (DSCL),
defined as the smallest lattice that contains 𝒜 and ℬ, and therefore 𝒞
as well.9 Interestingly, the integer algebra of SNF reveals that the ratios
of the four lattices are integers, given in terms of integers 𝛴𝒜 and 𝛴ℬ
(defined in (1)), and are related as

det(𝑪) det(𝑫) = det(𝑨) det(𝑩). (6)

Figs. 7(a) and 7(b) show the four lattices in the AB-stacked and the
𝛴7 BG configurations, respectively. The two graphene multilattices 𝒜
and ℬ are shown in red and blue. The CSL 𝒞 is marked in purple
(red+blue), and the DSCL 𝒟 in gray. Since 𝛴 = 1 in the AB-stacked
configuration, the four lattices (not including the basis atoms of 𝒜 and
ℬ) coincide in Fig. 7(a). On the other hand, the DSCL (CSL) in Fig. 7(b)
is 7 times smaller (larger) than the graphene lattice.

The following theorem characterizes the translational invariance of
the interface and highlights the importance of the DSCL. The parallel
bases resulting from SNF play a critical role in the proof (see Admal
et al. (2022)) of the theorem.

Theorem 1. Translating lattice 𝒜 by a vector 𝒃 ∈ 𝒟 with ℬ fixed results
in a shift 𝝀𝒜 ∈ ℬ of the CSL. In other words

(𝒜 + 𝒃) ∩ℬ = 𝒞 + 𝝀𝒜 .

In addition, the shift is linear in 𝒃, i.e.

𝝀𝒜 (𝒃1 + 𝒃2) = 𝝀𝒜 (𝒃1) + 𝝀𝒜 (𝒃2), for any 𝒃1, 𝒃2 ∈ 𝒟 . (7)

Fig. 8 conveys the essence of Theorem 1 — translating the shaded
region of the red lattice by a DSCL vector (shown in arrows) leads to
a CSL shift. However, since the interface structure is preserved, the
interfacial energy is identical in the slipped and the non-slipped region,
which leads us to the following definition — an interface dislocation is
a line of displacement discontinuity with Burgers vector equal to a DSCL
vector. Moreover, the DSCL translational invariance of the interface
implies the GSFE is periodic with respect to the DSCL, and it suffices
to describe the GSFE on a primitive unit cell of the DSCL.

Using the above definition, we can now revisit Fig. 7 to reason the
qualitative differences noted in Section 2 between dislocations in the
heterodeformed AB-stacked BG and the 𝛴7 BG configurations. Since
the DSCL of an AB-stacked BG is identical to the graphene lattice,
its GSFE has the periodicity of graphene, and a dislocation in an AB-
stacking is a lattice vector of graphene. However, full dislocations are

9 𝒟 is a fictitious lattice as some of its points are unoccupied.

https://github.com/oilab-project/oILAB.git
https://github.com/oilab-project/oILAB.git
https://github.com/oilab-project/oILAB.git


Mechanics of Materials 190 (2024) 104903

8

M.T. Ahmed et al.

Fig. 7. (a) AB-stacked (0° twist) bilayer graphene forming a 𝛴 = 1 moiré. (b) 21.786789◦ twisted BG resulting in a 𝛴 = 7 moiré. Open circles represent the second basis atom of
graphene. The two graphene lattices, 𝒜 and ℬ, are shown in blue and red, while the moiré superlattice (𝒞 ) and the DSCL (𝒟 ) are shown in purple and gray, respectively. The
highlighted region represents a unit cell of 𝒞 . The ratio of the unit cell size of the moiré superlattice to that of the graphene lattice and the corresponding ratio between the
graphene lattice and 𝒟 are equal to 𝛴. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Translational invariance of a 21.786789◦ twisted BG. Translating the shaded region of the red lattice by a DSCL vector leaves the interface structure invariant and results
in a shift in the CSL. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. GSFE [meVÅ
−2

] plots of 𝛴7 21.786 789° twisted BG, computed in LAMMPS using (a) the KC-1 parametrization at 26% out-of-plane compression, and (b) the KC-2
parametrization at 39% out-of-plane compression.
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Fig. 10. Density functional theory-generated GSFE [meVÅ
−2

] of a 𝛴7 21.786 789°
twisted BG at 26% out-of-plane compression.

not observed in an AB-stacking due to degenerate minima in the GSFE,
i.e., the GSFE plotted on a primitive unit cell of the DSCL has more than
one minimum. Instead, as noted in Section 2.1, partial dislocations form
whose Burgers vector is the relative vector connecting two minima of
the GSFE. Moving on to the 𝛴7 BG, the magnitude of the smallest non-
zero DSCL vector is equal to 2.46∕

√

7 = 0.929 792 153Å (follows from
(1) and (6)), which is indeed the displacement jump (see Fig. 4(b))
observed in the atomistic simulation with the KC-1 parametrization.
This implies the line defects in 𝛴7 BG, modeled using KC-1, are full
interface dislocations. Fig. 9(a) shows the GSFE of the KC-1 modeled 𝛴7
BG. The absence of degenerate minima in Fig. 9(a) justifies the absence
of partials in Fig. 4(b). However, the GSFE of the KC-2 modeled 𝛴7 BG,
shown in Fig. 9(b), features two degenerate minima, which suggests
the interface dislocations in Fig. 4(d) are partials. The magnitude of
the Burgers vector of the partials can be inferred from Fig. 9(b) as
2.46∕(

√

3
√

7) = 0.536 816Å. In addition to the Burgers vectors, the
GSFE also determines the arrangement of the dislocation network.
Recall from Section 2.2, that the KC-1 parametrization resulted in a
honeycomb dislocation network that separates defect-free 𝛴7-stacked
hexagonal regions. We assert that the number of sides of the low-energy
region is determined by the number of nearest neighbor GSFE minimizers
of a minimizer. This assertion is corroborated by GSFE plots in Fig. 9
— a GSFE minimizer in the KC-2 parameterization has three nearest
neighbor minimizers, and therefore, the resulting dislocation network
is formed by triangular defect-free 𝛴7-stackings.

Recall from Section 2.2 that the step character of the displacement
‘‘jump’’ is accentuated as the out-of-plane compression increases. This
is because as the two layers are compressed the difference between
the maximum and the minimum values of the GSFE, which we will
refer to as the GSFE range width, increases. We noticed that for a
given out-of-plane compression, compared to the KC-1 modeled BG, the
KC-2 modeled 𝛴7 BG has a smaller GSFE range width. This was the
primary reason we chose a larger out-of-plane compression (39%) in
the simulation using the KC-2 model so that the GSFE range widths of
the two parametrizations are equal to 0.8meVÅ−2, as shown in Fig. 9.
Although the GSFE range widths match, the interface dislocations of
the KC-2 model are more diffused because (a) the Burgers vector of
the partial is smaller by a factor of

√

3, and (b) the energy barrier
separating two nearest-neighbor minima in the GSFE (Fig. 9(b)) of the
KC-2 potential is smaller than that of the KC-1 potential (Fig. 9(a)).

Finally, we verify using density functional theory (DFT) calcula-
tions that the KC-2 is superior to KC-1. The DFT-generated GSFE (see
Appendix C), plotted in Fig. 10, compares qualitatively well with the
GSFE in Fig. 9(b). However, from a modeling perspective, the two
models are equally valuable as they demonstrate the links between
bicrystallography, GSFE, and the properties of interface dislocations.
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4. A generalized Frenkel–Kontorova (GFK) model for 2D heteroin-
terfaces

The goal of this section is to build a continuum model to predict
structural relaxation in heterostructures subjected to arbitrary het-
erodeformations by generalizing the Frenkel–Kontorova model of Nam
and Koshino (2017). In Section 5, we apply the GFK model to predict
structural relaxation in heterodeformed BGs. The kinematics of the
GFK model is inspired by the framework of large deformation crystal
plasticity (Clayton, 2010; Admal et al., 2018; He and Admal, 2021;
Joshi et al., 2022), wherein dislocations are defined with respect to a
defect-free natural configuration.

4.1. Kinematics

Consider an interface formed by two 2D (multi) lattices. For simplic-
ity, we will ignore out-of-plane displacement and assume the lattices
occupy regions 𝛺ref

t and 𝛺ref
b in the 2D Euclidean point space R2.10

The variable 𝛼 is used to index the top (t) and bottom (b) layers,
i.e., 𝛼 = t or b. The role of a reference configuration is to measure
displacements relative to a fixed configuration, and its choice should
not affect the predictions of the model. Since our goal is to isolate
and predict displacements associated with atomic reconstruction – as
opposed to large-scale deformation – the reference configurations are
chosen such that the lattices in 𝛺ref

𝛼 are twisted relative to each other
or are independently strained uniformly such that they are marginally
misaligned relative to a low energy moiré configuration.11 From Sec-
tion 2, we know that such reference configurations are not stable and
undergo atomic reconstruction by nucleating interface dislocations. The
goal of this section is to construct frame-invariant kinematic measures
that quantify the elastic and vdW energies responsible for the atomic
reconstruction.

Let 𝝓𝛼 ∶ 𝛺ref
𝛼 × [0,∞] → R2 (𝛼 = t, b) denote time-dependent

deformation maps associated with the atomic reconstructions of the
respective lattices, measured relative to their reference configurations
(see Fig. 11). The deformed configuration to which 𝝓𝛼 maps to will
be denoted by 𝛺𝛼 . Adopting the convention of continuum mechanics,
we use 𝑿𝛼 to denote an arbitrary material point in 𝛺ref

𝛼 . The gradients
of the deformation maps are given by 𝑭 𝛼 ∶= ∇𝝓𝛼 . At this stage, it is
useful to connect to the heterostrained moiré example of Section 2,
wherein a 𝛴7 moiré twisted BG (21.786789◦ twist relative to the AB
stacking) when subjected to principal stretches of 1.05% and −0.2%,
was observed to undergo atomic reconstruction under PBCs. For a con-
tinuum analog of this system, the reference configuration will reflect
the atomistic system prior to the energy minimization, and 𝝓𝛼 − 𝑿𝛼
corresponds to the displacements due to energy minimization. If the
two lattices in the reference configurations are allowed to relax in the
absence of external loads, they will (a) return to their respective planar
strain-free configurations, and (b) twist by an angle that minimizes
the vdW energy (as a function of the misorientation angle). In plas-
ticity, this relaxed configuration is commonly referred to as a natural
configuration.

The idea of a natural configuration (the middle configuration in
Fig. 11) plays a central role in our framework as we will show that
deformation measures defined with respect to the natural configuration
are frame-invariant and independent of the choice of the reference
configuration. Employing the language of crystal plasticity theories, we
let 𝑲𝛼 represent the map from the tangent space of 𝛺ref

𝛼 to that of

10 The out-of-plane displacement during atomic reconstruction is an im-
portant feature recently studied by Dai et al. (2016a). While incorporating
the out-of-plane displacement into our continuum model is conceptually
straightforward, we chose to ignore it to better convey the GFK model.

11 This choice is also motivated by the ’tear and stack’ technique (Kim et al.,
2016) to control the twist in a BG.
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Fig. 11. A schematic of the reference (left), natural (middle), and deformed (right) configurations of the GFK model.
the natural configuration. In this work, 𝑲𝛼 is a constant tensor, and
𝑲−1

𝛼 can be interpreted as the average deformation gradient (relative
to the natural configuration) an experimentalist imposes. The mapping
from the reference configuration to the natural configuration is given
by 𝜿𝛼(𝑿𝛼) ∶= 𝑲𝛼𝑿𝛼 . 𝛺n

𝛼 is used to denote a lattice in the natural
configuration and points in 𝛺n

𝛼 will be denoted by 𝒀 𝛼 . Furthermore,
we use 𝜼𝛼 to denote the mapping from the natural configuration to the
deformed configuration. By construction, we have

𝝓𝛼 = 𝜼𝛼◦𝜿𝛼 , (8)

where ◦ denotes function composition. From (8), the following rela-
tionship between the gradients of the deformation maps follow:

𝑭 𝛼 = 𝑯𝛼𝑲𝛼 , where 𝑯𝛼 ∶= ∇𝜼𝛼 . (9)

Note that the gradient in (9) is with respect to 𝒀 𝛼 . Unlike 𝑲𝛼 , 𝑯𝛼 is a
time-dependent field, and its inverse describes the relaxation of a local
neighborhood of a point 𝒙 ∈ 𝛺𝛼 in the absence of external loads. In the
context of our heterostrained moiré example, the natural configuration
is the 𝛴7 moiré since the two lattices are strain-free and the interfacial
energy is minimum in neighborhoods of small hetero-strains and twists.
Moreover, 𝑲b ≡ 𝑰 and 𝑲−1

t is equal to the biaxial strain, given in (4).
We will now construct frame-invariant kinematic measures to quan-

tify the elastic and vdW energies. Since the elastic energy due to atomic
reconstruction originates from the strains in the lattices measured
with respect to a strain-free natural configuration, the relevant frame-
invariant kinematic measure is the Cauchy–Green deformation tensor
𝑪𝛼 ∶= 𝑯T

𝛼𝑯𝛼 . From (9), 𝑪𝛼 can be written as

𝑪𝛼 = 𝑲−T
𝛼 𝑭 T𝑭𝑲−1

𝛼 . (10)

On the other hand, the vdW energy originates from the interaction
between lattices in the region 𝛺t ∩ 𝛺b. The vdW energy is described
by the relative translation between the two lattices when allowed to
relax to the natural configuration. Therefore, the vdW energy density
at a point 𝒙 ∈ 𝛺t ∩ 𝛺b will be expressed as a function of the relative
vector

𝒓(𝒙, 𝑡) = 𝑲 t𝑿t −𝑲b𝑿b, where 𝑿𝛼 ∶= 𝝓−1
𝛼 (𝒙, 𝑡). (11)

Summarizing, we have two frame-invariant kinematic measures, 𝑪𝛼
and 𝒓, expressed in terms of the deformation map 𝜙 for given 𝑲 , that
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𝛼 𝛼
characterize elastic and vdW energies, respectively. In the next section,
we will describe the constitutive laws for the elastic and vdW energies
in terms of 𝑪𝛼 and 𝒓.

4.2. Constitutive law

In this section, we construct a frame-invariant energy functional for
the GFK model. For prescribed average heterodeformations (𝑲−1

𝛼 ), the
total energy functional ℰ is additively decomposed as

ℰ [𝝓t ,𝝓b] = ℰel + ℰvdW, (12)

into elastic and interfacial energies. Since the elastic energy corre-
sponds to elastic distortions relative to the natural configurations, we
assume ℰel to be an integral of an elastic energy density (per unit area
in the natural configuration) 𝑒el over the natural configuration:

ℰel[𝝓t ,𝝓b] =
∑

𝛼=t,b
∫𝛺n

𝛼

𝑒el(𝑬𝛼 ; 𝛼) 𝑑𝒀 𝛼 , where 𝑬𝛼 = (𝑪𝛼 − 𝑰)∕2 (13)

is the frame-invariant Lagrangian strain tensor, and 𝑒el(∙; 𝛼) is the elastic
energy density of the 𝛼-th layer. For example, a Saint Venant–Kirchhoff
elastic energy density is of the form 𝑒el = C𝛼𝑬𝛼 ⋅𝑬𝛼∕2, where C𝛼 is the
fourth-order elasticity tensor of the 𝛼-lattice.

The interaction energy term ℰvdW measures the changes in the vdW
energy due to relative translations between the lattices in the natural
configuration. Since the lattices interact in the overlapping region 𝛺t ∩
𝛺b of the deformed configuration, we express ℰvdW as an integral over
𝛺t ∩𝛺b of a vdW energy density 𝑒vdW — measured per unit area in the
natural configuration. From an atomistic viewpoint, 𝑒vdW is the GSFE
density introduced in Section 2, and is expressed as a function of the
frame-invariant relative vector 𝒓 introduced in (11). Therefore,

ℰvdW[𝝓t ,𝝓b] =
1
2

∑

𝛼=t,b
∫𝛺t∩𝛺b

(det𝑯𝛼)−1𝑒vdW(𝒓(𝒙𝛼)) 𝑑𝒙𝛼 . (14)

Note that the factor (det𝑯𝛼)−1 is necessary because the integration
is over the deformed configuration as opposed to the natural con-
figuration. As a result, the interaction energy has to be split evenly
between the two lattices leading to the factor of 1∕2. From Section 2,
we know that 𝑒 has the periodicity of the DSCL corresponding to
vdW
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Fig. 12. Plots of 𝑒vdW for (a) AB-stacked 𝛴1 and (b) 𝛴7 configurations, computed using (15) and plotted such that the minimum is zero.
the natural configuration. For example, vdW energy densities for the
AB stacked-𝛴1 and the 𝛴7 natural configurations have the form

𝑒vdW(𝒓) = ±2𝒗0
3
∑

𝑝=1
cos (2𝜋d𝑝 ⋅ (𝒓 + 𝒕)) + 𝑐, (15)

where d1 and d2 are basis vectors of the reciprocal lattice, d3 =
−
(

d1 + d2), 𝒕 is a translation vector, and 𝑐 and 𝑣0 are constants. By
comparing (15) to the atomistics/first principles GSFE densities plotted
in Figs. 2 and 10 we obtain 𝑣0 and 𝒕 corresponding to the 𝛴1 and 𝛴7
configurations. Plots of the resulting 𝑒vdW, shown in Fig. 12, compare
well with those in Fig. 10.

Next, we propose an evolution law for the unknown fields, 𝝓t and
𝝓b, as a gradient flow of ℰ :

𝑚𝛼�̇�𝛼 = −δ𝝓𝛼
ℰ , 𝛼 = t, b (16)

where 𝑚𝛼 is a prescribed mobility, and δ𝝓𝛼
denotes variation with

respect to 𝝓𝛼 .

4.3. Derivation of the governing equations of the GFK model

In this section, we derive the governing equations of the GFK model
by calculating the variational derivative in (16). The derivation is
applicable to finite systems, a notable departure from earlier works,
which focused on infinite systems modeled using PBCs. In addition
to the critical role vdW energy plays in the structural relaxation of
2D heterostructures, we will show that it manifests as surface tension,
which contributes towards configurational forces on the two lattices.

To compute the variation with respect to 𝝓𝛼 , we transform the
integrals in (13) and (14) to the reference configurations. We begin by
rewriting the elastic energy in (13) by noting that 𝑑𝒀 𝛼 = (det𝑲𝛼)𝑑𝑿𝛼 :

ℰel[𝝓t ,𝝓b] =
∑

𝛼=t,b
∫𝛺ref

𝛼

𝑒el(𝑬𝛼 ; 𝛼)𝐽𝛼 𝑑𝑿𝛼 , (17)

where 𝐽𝛼 ∶= det𝑲𝛼 . Taking the variation of ℰel in (17) with respect to
𝝓𝛼 , we obtain

−δ𝝓𝛼
ℰel = 𝐽𝛼 Div(𝑷 𝛼) in 𝛺ref

𝛼 , where 𝑷 𝛼 ∶= 𝑯𝛼𝛁𝒆el𝑲−T
𝛼 . (18)

The tensor 𝑷 𝛼 is the 2D analog of the elastic Piola–Kirchhoff stress,
which measures force in 𝛺𝛼 measured per unit length in 𝛺ref

𝛼 . In
addition, the variational derivative also yields the usual expression for
the traction on the boundary 𝛤𝛼 of 𝛺𝛼 as 𝑷 𝛼𝒏𝛼 , where 𝒏𝛼 is a outward
unit vector normal to 𝛤 ref

𝛼 .
Compared to (18), calculating the variation of ℰvdW in (14) is a

delicate exercise due to (a) the presence of the inverse function 𝝓−1
𝛼 ,

and (b) the domain of integration in (14) is a part of the deformed
configuration and is therefore sensitive to 𝝓𝛼 . We begin with δ𝝓t

ℰvdW.
To eliminate the dependence on 𝝓−1, we transform the two domains of
11

t

integration in (14) to 𝛥ref
t ∶= 𝝓−1

t (𝛺t∩𝛺b) in the reference configuration
by noting that 𝑑𝒙t = 𝑑𝒙b = (det 𝑭 t )𝑑𝑿t , resulting in

ℰvdW[𝝓t ,𝝓b] =
𝐽t
2 ∫𝛥reft

⎛

⎜

⎜

⎜

⎜

⎝

1 + det(𝑯 t𝑯−1
b )

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝛾t

⎞

⎟

⎟

⎟

⎟

⎠

𝑒vdW(𝒓t (𝑿t )) 𝑑𝑿t . (19)

where 𝒓𝛼(𝑿𝛼) ∶= 𝒓(𝒙)|𝒙=𝝓𝛼 (𝑿𝛼 ), i.e.

𝒓t (𝑿t ) = 𝑲 t𝑿t −𝑲b(𝝓−1
b ◦𝝓t (𝑿t )) and 𝒓b(𝑿b) = 𝑲 t (𝝓−1

t ◦𝝓b(𝑿b))−𝑲b𝑿b.

(20)

From (20), we note that the integrand in (19) depends on 𝝓t and its
gradient but not its inverse, as desired. The variational derivative of
(19) with respect to 𝝓t now follows:

−δ𝝓t
ℰvdW = 𝐽t

[

1 + 𝛾t
2

𝑯−T
b ∇𝑒vdW + Div

( 𝛾t
2
𝑒vdW𝑭 −T

t

)

]

in 𝛥ref
t . (21)

along with two kinds of traction forces
𝛾t
2
𝑒vdW𝑭 −T

t 𝒏t on 𝜕𝛥ref
t , (22a)

−
1 + 𝛾t
2

𝑒vdW𝑭 −T
t 𝒏t on 𝑆t ∶= 𝜕𝛥ref

t − 𝛤 ref
t . (22b)

The expression ∇𝑒vdW in (21) seeks to increase areas of high com-
mensurability, and is responsible for the formation of interface dislo-
cations. The term 𝑒vdW𝛾t∕2 in (21) is the surface tension/pressure that
is conjugate to aerial changes in 𝛺t , and (22a) is the corresponding
traction. The traction in (22a) acts to counter the thermodynamic
driving force that tends to dilate 𝛺t – since 𝑒vdW is negative – to
maximize the area of overlap with 𝛺b. Therefore, the traction in (22a) is
compressive, as the purple arrows in Fig. 13 depict. On the other hand,
the traction in (22b), shown in green in Fig. 13, is a configurational
force that acts on the part of 𝜕𝛥ref

t that belongs to the interior of 𝛺t .
It works to oppose the thermodynamic driving force that translates
𝛺t into 𝛺b, thereby increasing the area of overlap.12 Notice that the
boundary 𝑆t experiences both tractions mentioned in (22), as shown in
Fig. 13. Therefore, the total traction on 𝜕𝛥t due to vdW interactions is
given by

−𝑒vdW𝑭 −T
t 𝒏t on 𝑆t , and (23a)

𝛾t
2
𝑒vdW𝑭 −T

t 𝒏t on 𝜕𝛥ref
t − 𝑆t . (23b)

12 Mathematically, the configurational force on 𝑆t arises due to the
dependence of 𝛥ref (the domain of integration in (19)) on 𝝓 .
t t
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Fig. 13. A schematic showing two types of tractions (purple and green arrows) on
the boundary of the overlapping region, 𝛥t ⊂ 𝛺t , due to surface tension associated
with vdW interactions in a finite 2D heterostructure. The traction forces balance
the thermodynamic driving forces that act to increase the region of overlap. The
purple arrows are compressive forces associated with the overlapping region’s tendency
to dilate to increase its area. The green arrows are configurational forces on 𝑆t
that balance the thermodynamic forces conjugate to aerial changes in 𝛥t due to the
translation of 𝛺t into 𝛺b. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Substituting (18) and (21) into (16), results in a governing equation
for 𝛺t :

𝑚t �̇�t =

⎧

⎪

⎨

⎪

⎩

Div
(

𝑷 t +
𝛾t
2 𝑒vdW𝑭 −T

t

)

+ 1+𝛾t
2 𝑯−T

b ∇𝑒vdW(𝒓t ) in 𝛥t ,

Div(𝑷 t ) in 𝛺t − 𝛥t ,
(24)

where 𝑚𝛼 ∶= 𝐽−1
𝛼 𝑚, along with traction boundary conditions in (23).

Similarly, the governing equation for 𝛺b is given by

𝑚b�̇�b =

⎧

⎪

⎨

⎪

⎩

Div
(

𝑷 b +
𝛾b
2 𝑒vdW𝑭 −T

b

)

− 1+𝛾b
2 𝑯−T

t ∇𝑒vdW(𝒓b) in 𝛥b,

Div(𝑷 b) in 𝛺b − 𝛥b,
(25)

here 𝛾b ∶= det(𝑯b𝑯−1
t ), along with corresponding traction boundary

onditions. A notable feature of the governing equations is that the
otal stress now includes a contribution from surface tension, which was
bsent in previous Frenkel–Kontorova models that were developed for
nfinite systems. While the role of surface tension may be ignored for
nfinite systems, we expect it to play an important role in finite systems,
herein sliding between the constituent 2D lattices is enhanced. It is
orth pointing out that the two key features of our model – surface

ension and frame-invariance13 – are a consequence of the model’s
eometrically nonlinear kinematic framework.

Next, we will focus our attention on using the GFK model to simu-
ate atomic reconstruction in infinite 2D heterostructures and compare
ts predictions with atomistic simulation results of Section 2. To this
nd, we simplify our model for numerical implementation by ignoring
he surface tension terms and assuming 𝐽𝛼 ≈ 1, resulting in

𝑚�̇�t = Div(𝑷 t ) +𝑯−T
b ∇𝑒vdW(𝒓t ), (27a)

�̇�b = Div(𝑷 b) −𝑯−T
t ∇𝑒vdW(𝒓b). (27b)

Using (20) and recalling from (9) that 𝑯𝛼 = 𝑭 𝛼𝑲−1
𝛼 , the right-

and-side of (27) can be expressed entirely in terms of the unknown

13 Indeed, under an arbitrary superposed rigid body displacement given by
constant rotation tensor 𝑹 and a constant vector 𝒄, the fields transform to

̃
𝛼 = 𝑹𝝓𝛼 + 𝒄; �̃� 𝛼 = 𝑹𝑭 𝛼( ⟹ �̃�𝛼 = 𝑹𝑯𝛼);

�̃�𝛼 = 𝝈𝛼 ; �̃�𝛼 = 𝑲𝛼 ; �̃�𝛼 = 𝒓𝛼 , (26)
12

nd continue to satisfy (27). r
𝛼 , its gradient, and its inverse. However, the dependence on the
nverse is impractical for numerical computation. Therefore, we resort
o approximating14 𝒓t and 𝒓b as

𝒓t ≈ (𝑲 t −𝑲b)𝑿t −𝑯−1
b (𝝓t (𝑿t ) − 𝝓b(𝑿t )), (30a)

𝒓b ≈ (𝑲 t −𝑲b)𝑿b −𝑯−1
t (𝝓t (𝑿b) − 𝝓b(𝑿b)). (30b)

The above approximation preserves the frame-invariance of the model.
In the next section, we will present a numerical implementation of (27)
with the 𝒓𝛼-approximation in (30).

5. Numerical implementation of the GFK model and comparison
with atomistics

The goal of this section is to implement the GFK model by solv-
ing (27) numerically under PBCs, simulate atomic reconstruction in
heterostrained small- and large-twist BGs, and validate the continuum
model by comparing to atomistics. While the GFK model applies to
finite and infinite domains, we restrict the numerical implementation
to periodic systems as the primary goal is to compare to the periodic
atomistic simulations of Section 2.

Inputs to the model include —

• the top lattice 𝒜 and the bottom lattice ℬ of the natural con-
figuration, which form a moiré supercell. For example, the AB-
stacking and the 𝛴7 configurations;

• the average heterodeformations 𝑲−1
𝛼 imposed on the natural con-

figuration, which determine the reference configuration. We take
𝑲b = 𝑰 , and 𝑲−1

t is chosen from the set of heterodeformations
that ensure the reference configuration satisfies PBCs, i.e. lattices
𝒜 and 𝑲−1

b ℬ share a CSL. A primitive unit cell of this CSL is
chosen as the reference configuration and the simulation domain.
For example, when AB-stacking is the natural configuration, 𝑲−1

b
is a 0.29926342507◦ twist or the heterostrain in (2). When 𝛴7 is
the natural configuration, 𝑲−1

b is a 0.170076◦ twist or the strain
in (4).

• isotropic elastic constants of graphene: 𝜆 = 3.5 eVÅ−2 and 𝜇 =
7.8 eVÅ−2; and

• the constant 𝑣0 of the vdW energy density in (15). For the AB-
stacking, 𝑣0 is equal to 0.25meVÅ−2, and for the 𝛴7 configuration,
it is set to −0.08meVÅ−2 and 0.08meVÅ−2 corresponding to the
KC-1 and KC-2 potentials, respectively.

• the mobilities 𝑚𝛼 , which are chosen as unity.

5.1. Numerical method

PBCs offer the advantage of the fast Fourier transform (FFT) to
compute spatial gradients, and therefore, we use the pseudospectral

14 𝒓t and 𝒓b can be expressed as

𝒓t = 𝑲 t𝑿 t −𝑲b𝑿b = (𝑲 t −𝑲b)𝑿 t +𝑲b(𝑿 t −𝑿b), (28a)

b = 𝑲 t𝑿 t −𝑲b𝑿b = 𝑲 t (𝑿 t −𝑿b) + (𝑲 t −𝑲b)𝑿b. (28b)

ince 𝝓t (𝑿 t ) = 𝝓b(𝑿b), it follows that

𝝓t (𝑿 t ) − 𝝓b(𝑿 t ) = 𝝓b(𝑿b) − 𝝓b(𝑿 t ) ≈ 𝑭 b(𝑿b −𝑿 t ),

t (𝑿b) − 𝝓b(𝑿b) = 𝝓t (𝑿b) − 𝝓t (𝑿 t ) ≈ 𝑭 t (𝑿b −𝑿 t ),

which imply

𝑿 t −𝑿b ≈ −𝑭 −1
b (𝝓t (𝑿 t ) − 𝝓b(𝑿 t )), (29a)

t −𝑿b ≈ −𝑭 −1
t (𝝓t (𝑿b) − 𝝓b(𝑿b)). (29b)

Eq. (28a) and the approximation (29a) yield (30a). Similarly, (28b) and (29b)
esult in (30b).
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Fig. 14. A comparison of structural relaxation predicted by continuum and atomistics simulations of a 0.29926342507◦ small-twist BG. The units of energy density and displacement
are meVÅ

−2
and Å, respectively. The area enclosed by the red dashed line is the simulation domain. (e) compares the displacement across the dashed lines predicted by the

atomistic and the FK models. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
method (Hussaini and Zang, 1987) to solve the governing equation in
(27). Spatial gradients in (27) are computed using FFT and the solu-
tion is marched forward in time using the Runge–Kutta (RK) explicit
time integration with a fixed time step 𝛿𝑡, resulting in the following
discretized equations:

𝝓𝑛+1
𝛼 = 𝝓𝑛

𝛼 +
1
6𝑚

(

𝒌𝛼1 + 2𝒌𝛼2 + 2𝒌𝛼3 + 𝒌𝛼4
)

, where

𝒌𝛼1 = 𝛿𝑡𝒇 𝛼|𝝓=𝝓𝑛 , 𝒌𝛼2 = 𝛿𝑡𝒇 𝛼|𝝓=𝝓𝑛+ 𝒌𝛼1
2
, 𝒌𝛼3 = 𝛿𝑡𝒇 𝛼|𝝓=𝝓𝑛+ 𝒌𝛼2

2
,

𝒌𝛼4 = 𝛿𝑡𝒇 𝛼|𝝓=𝝓𝑛+𝒌𝛼3 .

Here, 𝜙𝑛
𝛼 ∶= 𝜙𝛼(⋅, 𝑡𝑛), 𝒇 𝛼 represents the right-hand-side of (27), and

𝒇 𝛼|𝝓=𝝓𝑛 denotes the evaluation of 𝒇 𝛼 using 𝝓𝑛
𝛼 . The spatial derivatives

in 𝒇 𝛼 are computed using FFT. The simulation domain was discretized
using a 128 × 128 grid, and 𝛿𝑡 = 0.1 sec was the time step size. The
spatial discretization was chosen such that the width of the interface
dislocations is reasonably resolved, and the temporal discretization is
fixed to ensure the numerical scheme remains stable.
13
All simulations are run long enough to ensure the elastic and the
vdW energies converge. Since 𝝓0

𝛼 ≡ 𝟎, the elastic energy at 𝑡 = 0 is
zero and the vdW energy is the only contributor to the total energy. As
the simulation progresses, elastic energy increases and the vdW energy
decreases, such that the total energy monotonically decreases.

5.2. Comparison with atomistics

We will now present continuum simulations and compare them to
atomistic simulations of heterodeformed BGs, discussed in Section 2.
The first column of Fig. 14 shows plots of the displacement magnitude
and the total energy density in a 0.29926342507◦ small-twist BG. They
compare well with the corresponding plots from the atomistic simula-
tion, shown in the second column. The area enclosed by the red dashed
line is the simulation domain. The plots are presented on an extended
domain to highlight the triangular network of dislocations. Fig. 14(e)
shows the line plots of the displacement component orthogonal to the
dashed lines in the respective energy density plots. The displacements
are measured relative to the AB-stacking. The displacement component
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Fig. 15. Structural relaxation in a 21.956 864 925 19Å large-twist BG using the KC-1 and KC-2 parametrizations. The energy density plots in (a) and (b) highlight the honeycomb
and the triangular network of interface dislocations, corresponding to KC-1 and KC-2 models, respectively. (c) and (d) compare the displacement across the dashed lines predicted
by the atomistic and the GFK models.
along the scanning direction is negligible (not shown in Fig. 14(e))
similar to the line plot in Fig. 1(b). It can be observed that the Burgers
vector computed using the GFK model compares well with atomistics.

Fig. 15 shows continuum simulation results of a 21.956 864 925 19°
large-twist BG using vdW energy densities corresponding to the KC-1
(first column) and the KC-2 models (second column). The color density
plots of the total energy density in Figs. 15(a) and 15(b) highlight
the honeycomb and triangular dislocation networks and match well
with those from atomistic simulations (see Fig. 4). As expected, the
energy density in the domain interiors is zero as they correspond to
the low-energy 𝐴𝐵 and 𝛴7 stackings. Figs. 15(c) and 15(d) compare
the displacement jumps in the atomistic and continuum simulations.15

Fig. 16 shows continuum simulations results of a heterostrained
21.786789◦ (𝛴7) twisted BG using the vdW energy density of the KC-
2 model. The displacement magnitude plotted in Fig. 16(b) compares
well with the plot of atomistic displacement magnitude in Fig. 16(a).
We note that the maximum displacement in the continuum simulation
is smaller compared to that in the atomistic simulation. The dislocation
network is not as conspicuous in the energy density plot in Fig. 16(c) as
it was in the earlier simulations. We attribute this feature to the diffused
dislocation network noted in Fig. 15(d). We note that magnitude of

15 Recall from footnote 5, that the calculation of the Burgers vectors from
the diffused displacement jump of atomistic simulations is approximate. The
Burgers vector can be computed exactly from the simulations of the GFK model
by considering a Burgers circuit formed by directed lines 𝒍t = 𝒍 and 𝒍b = −𝒍 in
the deformed configurations of the top and bottom lattices, respectively. The
directed line 𝒍 crosses a dislocation line and connects centers of two adjacent
𝛴7/𝛴1 stackings and back. By construction, the Burgers circuit is arbitrarily
thin, and its normal lies in the interface. Under this setting, the Burgers vector
can be measured as

∫𝒍
(𝑯−1

t −𝑯−1
b ) 𝑑𝒍.

We have confirmed using the above equation that all simulations presented in
this section recover the bicrystallography-predicted Burgers vector.
14
the energy density shown in Fig. 16(c) does not match with that in
Figs. 6(a) and 6(b) due to the atomic energy density variation of the
𝛴7 configuration, as noted in Section 2.2.

6. Summary and conclusions

Tuning quantum mechanical properties with atomic-scale precision
is at the core of scientific efforts geared towards ushering in the second
quantum revolution (Dowling and Milburn, 2003). New vdW materials
and heterostructures are one of the key types of the novel materials
that are being explored in this regard, and provide tremendous op-
portunities for the field of straintronics. The design and development
of vdW heterostructures with tailored properties hinge on the ability
to efficiently parse heterostrains and predict the properties of the
resulting moiré superlattices. Within this context, this paper focuses
on predicting atomic reconstruction in vdW heterostructures efficiently
by developing a generalized Frenkel–Kontorova (GFK) model that is
frame-invariant and applicable for small and large heterostrains.

Motivated by dislocations-mediated structural relaxation in a twisted
BG, the development of the model was spurred by the following ques-
tions — (a) under what heterodeformations does a vdW heterostruc-
ture undergo structural relaxation?; (b) is the relaxation dislocations-
mediated?; and (c) how are dislocations defined in heterostructures?
In our study, large twist BG serves as a surrogate for heterostructures.
Noting the cusp-like local minima at an angle of 21.786789◦ in the plot
of interface energy versus the twist angle of a BG is a signature of defect
nucleation, we hypothesized that a heterostrained 21.786789◦ large-
twist BG will undergo dislocations-mediated atomic reconstruction.
Using atomistic simulations of 21.786789◦ large-twist BG subjected to
small heterotwists and heterostrains, we confirmed our hypothesis and
probed the above questions. The following key observations were made
in our atomistic simulations:

1. Structural relaxation occurs via strain localization along a net-
work of lines, which suggests it is dislocations-mediated. More
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Fig. 16. Simulation results of a heterostrained 21.786789◦ large-twist BG. The units of displacement and energy density are Å and meVÅ
−2

, respectively.
interestingly, unlike the small twist case, the measured dis-
placement jump/Burgers vectors were smaller than the smallest
lattice vector of graphene.

2. Similar to the small-twist case, structural relaxation is charac-
terized by regions of low-energy stacking interspersed by line
defects. The defect-free 21.786789◦ stacking is the analog of the
low energy AB-stacking observed in a small-twist BG.

To reveal the crystallographic origins of the observed dislocations,
we explored the definition of an interface dislocation. Using SNF bicrys-
tallography, which employs the Smith normal form for integer matrices,
we showed that a heterointerface is invariant with respect to transla-
tions in the DSCL. In other words, the GSFE of the defect-free 21.786789◦

twisted BG is periodic with respect to the DSCL, which implies the Burg-
ers vector of interface dislocations belongs to the DSCL. The GSFE from
atomistics, and its periodicity inferred from SNF bicrystallography, are
used to construct the interfacial energy of the GFK model.

Inspired by crystal plasticity models, the GFK model includes three
configurations — reference, natural, and deformed. The defect-free
21.786789◦ BG serves as the stress-free natural configuration, and the
reference configuration is the natural configuration subjected to a uni-
form heterodeformation. By prescribing the constitutive law (interfacial
energy and elastic energy) with respect to the natural configuration,
the GFK model is rendered frame-invariant. The GFK model was used
to simulate various heterodeformed BGs, and it was validated by com-
paring its predictions to those from atomistics. For simplicity, the GFK
model was developed in the context of no out-of-plane relaxation.
However, as noted by Dai et al. (2016b) and Rakib et al. (2023), the
out-of-plane displacement can transform the straight dislocation lines
into helical lines, signifying its notable influence on the dislocation
network. To incorporate the out-of-plane displacement, the constitutive
law of the GFK model should include (a) a 3D GSFE (Zhou et al., 2015)
(as opposed to the current 2D GSFE), wherein the third dimension
corresponds to the interlayer spacing, and (b) a bending (Dai et al.,
2016a) energy for the individual 2D materials.

We conclude by emphasizing the immense potential of the GFK
model to probe the enormous heterostructure-heterostrain space for
correlated electron physics. Although the model is classical and fo-
cuses on structural prediction, it can serve as — (a) a workhorse for
predicting structural relaxation in inhomogeneously strained heteroin-
terfaces and (b) provide a predictor for structural relaxation under
uniform deformation, which can be further corrected using machine
learning-based first-principles calculations (Pathrudkar et al., 2023).
15
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Appendix A. Coincidence relation between two lattices

In this section, we will develop an algorithm to enumerate heterode-
formations that result in moiré superlattices. Let 𝒜 and ℬ denote two
2D lattices with structure matrices 𝑨 and 𝑩, respectively. It is easy to
see that the lattices coincide on a moiré superlattice if and only if the
transition matrix, 𝑻 ∶= 𝑨−1𝑩, is rational. However, this condition is
invariably not satisfied and a heterodeformation is required to form
a moiré supercell. Therefore, we are interested in all distortions 𝑭
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of lattice 𝒜 , such that the deformed lattice shares a moiré supercell
with ℬ. In other words, we would like to compute all 𝑭 such that the
transition matrix

𝑻 = 𝑩−1𝑭𝑨 is rational. (A.1)

Moreover, since large elastic strain are energetically unfavorable, we
are only interested in heterodeformations that lead to small stretches.
Heterotwists are included in this search as they cost no elastic energy.

A general solution to (A.1) is given by the following theorem
(see Admal et al. (2022)):

Theorem 2. Let 𝒜 and ℬ be two 2D lattices forming a heterostructure,
nd 𝑭 an in-plane linear transformation. Then, 𝒜 ∩ 𝑭ℬ is a 2D moiré
superlattice if and only if there exist lattice vectors 𝒒1 and 𝒓1 in ℬ, and 𝒒2
nd 𝒓2 in 𝒜 such that

2 = 𝛼𝑭𝒒1, 𝒓2 = 𝛽𝑭𝒓1 (A.2)

for some rationals 𝛼 and 𝛽. Moreover, 𝑭 is given by

𝑭 = 1
𝛼
𝒒2 ⊗ q1 +

1
𝛽
𝒓2 ⊗ r1, (A.3)

where q1, r1 ∈ ℬ∗ (dual/reciprocal lattice of ℬ) such that q1 ⋅ 𝒒1 =
r1 ⋅ 𝒓1 = 1.

An algorithm to construct 𝑭 given in (A.3) can be found in Admal
t al. (2022), and it is implemented in oILAB.

ppendix B. Smith normal form bicrystallography

In this section, we introduce SNF bicrystallography, a framework
o analyze the crystallography of heterostructures. In this paper, SNF
icrystallography is used to calculate the DSCL of a heterostructure, and
lays a central role in our definition of interface dislocation, introduced
n Section 3. We refer the reader to Admal et al. (2022) for a more
etailed presentation.

Let 𝒜 and ℬ denote 2D lattices that form a moiré superlattice. From
ppendix A, we know that the transition matrix 𝑻 = 𝑨−𝟏𝑩 is rational.
herefore, 𝑻 can be expressed as

= 𝑷
𝜇
, (B.1)

here 𝜇 is an integer, and 𝑷 is an integer matrix such that 𝜇 and the
entries of 𝑷 are co-prime. Using the Smith normal form for integer

atrices, 𝑷 can be multiplicatively decomposed as

= 𝑼𝜟𝑽 −1, (B.2)

where 𝑼 and 𝑽 are unimodular matrices, and 𝜟 = diag(𝛿1, 𝛿2) is a
diagonal matrix and 𝛿1 = gcd(𝑷 ). Substituting (B.2) into (B.1) and
rearranging, we have

𝜇𝑩∥ = 𝑨∥𝜟, where (B.3)

𝑨∥ = 𝑨𝑼 , and 𝑩∥ = 𝑩𝑽 . (B.4)

Since 𝑼 and 𝑽 are unimodular, the matrices 𝑨∥ and 𝑩∥ qualify as new
structure matrices of lattices 𝒜 and ℬ, respectively. In other words,
the columns {𝒂∥𝑖 } and {𝒃∥𝑖 } of 𝑨∥ and 𝑩∥ are the new bases of the two
attices. Since 𝜟 is a diagonal matrix, Eq. (B.3) reads as,

𝒃∥𝑖 = 𝛿𝑖𝒂
∥
𝑖 (no summation over i). (B.5)

B.5) implies the new bases are parallel and coincide on the CSL 𝒞 with
asis vectors
∥
𝑖 =

𝜇
gcd(𝜇, 𝛿𝑖)

𝒃∥𝑖 =
𝛿𝑖

gcd(𝜇, 𝛿𝑖)
𝒂∥𝑖 . (B.6)

The basis vectors {𝒄∥1 , 𝒄
∥
2} of 𝒞 can be collected in a structure matrix as

∥ ∥ ∥
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𝑪 = 𝑩 𝑵 = 𝑨 𝑴 . (B.7)
where

𝑴 = diag
(

𝛿𝑖
gcd(𝜇, 𝛿𝑖)

)

and 𝑵 = diag
(

𝜇
gcd(𝜇, 𝛿𝑖)

)

, (B.8)

are auxiliary diagonal matrices satisfying the relation 𝜇𝑴 = 𝜟𝑵 .
The DSCL, denoted as 𝒟 , is the smallest lattice that contains lattices
and ℬ. The basis vectors {𝒅∥

1 ,𝒅
∥
2} of 𝒟 are given by

∥
𝑖 =

gcd(𝜇, 𝛿𝑖)
𝛿𝑖

𝒃∥𝑖 =
gcd(𝜇, 𝛿𝑖)

𝜇
𝒂∥𝑖 . (B.9)

(B.8) and (B.9) imply the structure matrix of 𝒟 satisfies

𝑫∥ = 𝑩∥𝑴−1 = 𝑨∥𝑵−1 . (B.10)

(B.7) and (B.10) imply the ratios of areas of primitive unit cells

𝛴𝒜 ∶= det 𝑪∥

det𝑨∥
= det𝑴 , 𝛴ℬ ∶= det 𝑪∥

det 𝑩∥
= det𝑵 (B.11)

are integers, and det(𝑪) det(𝑫) = det(𝑨) det(𝑩). The parallel bases for
𝒜 , ℬ, 𝒞 , and 𝒟 highlight an interesting analogy with the notions
of least common multiple (lcm) and greatest common divisor (gcd) of
integers. The CSL and the DSCL may be interpreted as the lcm and the
gcd of lattices 𝒜 and ℬ, respectively.

We will now demonstrate the application of SNF bicrystallography
to the 21.786789◦ twisted BG. Let 𝒜 represent the hexagonal lattice of
graphene with structure matrix

𝑨 = 𝑎
2

[

0 −
√

3
2 −1

]

,

here the lattice constant of graphene is assumed to be 𝑎 = 2.46 Å. Let
represent another hexagonal lattice twisted anti-clockwise relative

o 𝒜 , i.e.

= 𝑹𝜃𝑨 .

here 𝜃 = 21.786789◦ guarantees a coincidence between the lattices
with a rational transition matrix

𝑻 = 𝑨−1𝑩 = 1
7

[

5 −8
8 −3

]

, (B.12)

The SNF of the integer matrix in (B.12) yields

𝜟 = diag(1, 49), 𝑼 =
[

19 1
1 0

]

, 𝑽 =
[

−1 −3
−3 −8

]

,

𝑴 = diag(1, 7), 𝑵 = diag(7, 1).

The basis vectors of the CSL and the DSCL can be obtained using (B.7)
and (B.10). The basis vectors of 𝒞 are used to define the periodic box of
our atomistic and continuum simulations, while those of 𝒟 are used to
identify the Burgers vectors of interface dislocations. While the parallel
bases are valuable in proving statements such as Theorem 1, the cor-
responding structure matrices are typically ill-conditioned. Therefore,
we resort to lattice reduction algorithms to obtain reduced bases from
the parallel bases.

Appendix C. Computational details of density functional theory
calculations of the GSFE of 𝟐𝟏.𝟕𝟖𝟔𝟕𝟖𝟗◦ twisted bilayer graphene

First-principles calculations using Density Functional Theory (DFT)
were performed to calculate the GSFE of 21.786789◦ twisted bilayer
graphene, via the Quantum Espresso package (Giannozzi et al., 2009).
Projector augmented wave (PAW) type pseudopotentials (Blöchl et al.,
2002), along with the generalized gradient approximation (Perdew–
Burke–Ernzerhof functional (Perdew et al., 1998)) and Grimme’s den-
sity functional dispersion correction (DFT-D2) (Grimme et al., 2011)
were employed to calculate the GSFE landscape of BG systems. These
choices allowed us to balance computational accuracy and efficiency,
and are also consistent with earlier literature (Zhou et al., 2015).
The interlayer spacing was set to 2.46 Å, inducing 26% out-of-plane
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Fig. E.17. The out-of-plane stress vs strain in an AB-stacked bilayer graphene,
computed using the KC-1 potential.

compression in the BG system. In-plane periodic boundary conditions,
and out-of-plane isolated system conditions were adopted to simulate
the two-dimensional nature of the system. The values of the plane
wave cutoff energy (𝐸cut = 70 Rydbergs) and k-point mesh parameters

ere optimized to ensure the total energy of systems converged to
.001 eV in all calculations. The GSFE calculation was conducted by
aking displacement on a 15 × 15 × 1 mesh of two lattice vectors,
𝒃1 = −0.929792342 𝒆1, and 𝒃2 = −0.464896163 𝒆1 + 0.805223601 𝒆2.

Appendix D. Comparison with the small-twist BG model of Nam
and Koshino (2017)

In this section, we will specialize the GFK model to small-twist
homostructures by invoking isotropic linear elasticity to recover the
model of Nam and Koshino (2017), which was developed to model
atomic reconstruction in small-twist BG.

The Frenkel–Kontorova model of Nam and Koshino (2017) for
small-twist BG was formulated in terms of a single unknown field 𝒖−,
which denotes the difference in the displacement fields of the top and
bottom lattices. We will now show that under small deformations,
the Nam and Koshino (2017) model can be recovered from the GFK
model of Section 4.

Introducing the displacement variables 𝒖𝛼 ∶= 𝝓𝛼(𝑿, 𝑡) − 𝑿, and
𝒖± = 𝒖t ± 𝒖b, we first express ℰ as a functional of 𝒖+ and 𝒖− under the
assumption of small deformation. Notice that we are using the variable
𝑿, as opposed to 𝑿𝛼 , since the two reference configurations coincide
under PBCs. Beginning with ℰel, we invoke linear elasticity by writing
the elastic energy density as

𝑒el(𝝐𝛼) =
1
2
C𝝐𝛼 ⋅ 𝝐𝛼 = 𝜆(tr 𝝐𝛼)2 + 2𝜇𝝐𝛼 ⋅ 𝝐𝛼 , (D.1)

here the Lagrangian strain in (13) has been replaced by the infinites-
mal strain 𝝐𝛼 = (∇𝒖𝛼 + ∇𝒖T𝛼 )∕2, and C is the fourth-order isotropic
lasticity tensor with lamé constants 𝜆 and 𝜇. Under this setting, ℰel

can be recast as a functional of 𝒖+ and 𝒖− as follows:

ℰel[𝒖+, 𝒖−] =
1
4 ∫𝛺ref

(C𝝐+ ⋅ 𝝐+ + C𝝐− ⋅ 𝝐−) 𝑑𝑿. (D.2)

here 𝜖± ∶= (∇𝒖± + ∇𝒖T±)∕2. Next, assuming (a) det𝑲𝛼 ≈ det 𝑭 𝛼 ≈ 1
and (b) 𝑯𝛼 ≈ 𝑰 , the vdW energy can be expressed as a functional
exclusively of 𝒖−:

ℰvdW[𝒖−] = ∫𝛺ref
𝑒vdW(𝒓(𝑿)) 𝑑𝑿, (D.3)

where 𝒓(𝑿), given by (11), is written as 𝒓(𝑿) = (𝑲 t − 𝑲b)𝑿 − 𝒖−(𝑿)
since 𝝓t − 𝝓b = 𝒖t − 𝒖b = 𝒖−.

Since ℰvdW in (D.3) is independent of 𝒖+, it is easy to see that
17

minimizing the total energy functional ℰ [𝒖+, 𝒖−] results in 𝒖+ ≡ 0,
which allowed Nam and Koshino (2017) to cast their total energy
functional in the single variable 𝒖−:

ℰ [𝒖−] = ∫𝛺ref

( 1
4
C𝝐− ⋅ 𝝐− + 𝑒vdW(𝒓)

)

𝑑𝑿. (D.4)

Appendix E. Calculation of out-of-plane stress required to reduce
interlayer separation in an AB-stacked bilayer graphene

Fig. E.17 shows the out-of-plane stress versus strain in an AB-
stacked bilayer graphene modeled using the KC-1 potential. The strain
is measured relative to the reference spacing of 3.34Å. The stress
is computed as the derivative of the interfacial energy density with
respect to the interlayer spacing.
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