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A. Error Calculations

The primary metrics used for error calculations in this
work are:
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where, ρ is the ground truth electron density and ρ̂ is the
ML-predicted electron density.

The error in energy predictions presented in the paper
are absolute difference in Kohn-Sham Density Functional
Theory (KS-DFT) obtained energy and energy obtained
by postprocessing ML predicted electron density field,
and is reported in Hartree/atom.

B. Compositions Used in the ab initio Calculations

Training and testing compositions for SiGeSn are given
in Figure S1, while for CrFeCoNi are given in Figure S2.

The complete list of training and testing compositions
for the 64 and 216 atom SiGeSn data are given in Tables
S1 and S2, respectively. Finally, Table S3 contains the
complete list of training and testing compositions in the
32 atom CrFeCoNi data.
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System
Index % Si % Ge % Sn

System
Index % Si % Ge % Sn

t-1 0 0 100 t-24 25 75 0
t-2 0 12.5 87.5 t-25 37.5 0 62.5
t-3 0 25 75 t-26 37.5 12.5 50
t-4 0 37.5 62.5 t-27 37.5 25 37.5
t-5 0 50 50 t-28 37.5 37.5 25
t-6 0 62.5 37.5 t-29 37.5 50 12.5
t-7 0 75 25 t-30 37.5 62.5 0
t-8 0 87.5 12.5 t-31 50 0 50
t-9 0 100 0 t-32 50 12.5 37.5
t-10 12.5 0 87.5 t-33 50 25 25
t-11 12.5 12.5 75 t-34 50 37.5 12.5
t-12 12.5 25 62.5 t-35 50 50 0
t-13 12.5 37.5 50 t-36 62.5 0 37.5
t-14 12.5 50 37.5 t-37 62.5 12.5 25
t-15 12.5 62.5 25 t-38 62.5 25 12.5
t-16 12.5 75 12.5 t-39 62.5 37.5 0
t-17 12.5 87.5 0 t-40 75 0 25
t-18 25 0 75 t-41 75 12.5 12.5
t-19 25 12.5 62.5 t-42 75 25 0
t-20 25 25 50 t-43 87.5 0 12.5
t-21 25 37.5 37.5 t-44 87.5 12.5 0
t-22 25 50 25 t-45 100 0 0
t-23 25 62.5 12.5

Supplementary Table S1. List of training and
testing compositions in the 64 atom SiGeSn data
set. The error in electron density and energy prediction
for these composition is given in S10 and Main Text

Figure 4.

C. Details of Data Generation Methodology:

In the context of this work, the ‘data’ that was used
for both testing and training the model consisted of a
large batch of snapshots. Each snapshot represents an
atomic arrangement in the simulation cell. For each of
the snapshots, a grid in real space is considered and the
corresponding electron density value at each grid point is
obtained. The process of obtaining these ‘snapshot’ files
was as follows:

1. An atomic configuration was selected.
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System
Index % Si % Ge % Sn
T-1 9.259 29.63 61.111
T-2 9.259 64.815 25.926
T-3 29.63 60.185 10.185
T-4 64.815 25 10.185
T-5 60.185 9.259 30.556
T-6 30.093 30.093 39.815
T-7 30.093 39.815 30.093
T-8 25 9.259 65.741
T-9 39.815 30.093 30.093
T-10 30.556 14.815 54.63
T-11 50 14.815 35.185
T-12 54.63 30.556 14.815
T-13 0 50 50
T-14 50 0 50
T-15 50 50 0
T-16 100 0 0
T-17 0 100 0
T-18 0 0 100
T-19 35.185 50 14.815
T-20 14.815 54.63 30.556
T-21 14.815 35.185 50

Supplementary Table S2. List of compositions in
the 216-atom SiGeSn data set. These systems
are used for testing purposes only. The error in

electron density and energy prediction for these
composition is given in Figure S4.

2. A Kohn-Sham density functional theory (KS-DFT)
calculation was performed to obtain the ground
state electron densities associated with that atomic
configuration.

3. Text-processing was performed on the electron den-
sity output to format it for further calculations.

For each input atomic configuration, one snapshot file
would be obtained, which could then be used for either
training or testing.

To produce the atomic configurations, one of three op-
tions was leveraged: sampling from the trajectory of an
ab initio molecular dynamics (AIMD) simulation, sam-
pling from the trajectory of a classical molecular dynam-
ics (MD) simulation, or handcrafting more unique sys-
tems for the purpose of test data (e.g. defects, checker-
board boundaries).

The first option, AIMD, was used for all of the SiGeSn
system data (ternary, binary, and unary derivatives).
This option was selected due to the ease of implementa-
tion; we obtained coordinates and electron densities, and
both of these were calculated with high fidelity at each
step of the AIMD trajectory. We leveraged this approach
in our previous work [1], and it was straightforward to
extend the method to the ternary SiGeSn system. This
streamlined many aspects of the data generation. How-
ever, the downside of this approach is its high computa-
tional expense; since most of the steps in the trajectory

System

Index % Cr % Fe % Co % Ni

System

Index % Cr % Fe % Co % Ni
q-1 25 25 25 25 q-36 12.5 12.5 12.5 62.5
q-2 100 0 0 0 q-37 12.5 12.5 25 50
q-3 0 100 0 0 q-38 12.5 12.5 37.5 37.5
q-4 0 0 100 0 q-39 12.5 12.5 50 25
q-5 0 0 0 100 q-40 12.5 12.5 62.5 12.5
q-6 75 25 0 0 q-41 12.5 25 12.5 50
q-7 25 75 0 0 q-42 12.5 25 25 37.5
q-8 75 0 0 25 q-43 12.5 25 37.5 25
q-9 25 0 0 75 q-44 12.5 25 50 12.5
q-10 0 0 75 25 q-45 12.5 37.5 12.5 37.5
q-11 0 0 25 75 q-46 12.5 37.5 25 25
q-12 0 75 25 0 q-47 12.5 37.5 37.5 12.5
q-13 0 25 75 0 q-48 12.5 50 12.5 25
q-14 0 75 0 25 q-49 12.5 50 25 12.5
q-15 0 25 0 75 q-50 12.5 62.5 12.5 12.5
q-16 75 0 25 0 q-51 25 12.5 12.5 50
q-17 25 0 75 0 q-52 25 12.5 25 37.5
q-18 50 50 0 0 q-53 25 12.5 37.5 25
q-19 50 0 50 0 q-54 25 12.5 50 12.5
q-20 50 0 0 50 q-55 25 25 12.5 37.5
q-21 0 50 50 0 q-56 25 25 37.5 12.5
q-22 0 50 0 50 q-57 25 37.5 12.5 25
q-23 0 0 50 50 q-58 25 37.5 25 12.5
q-24 50 25 25 0 q-59 25 50 12.5 12.5
q-25 50 25 0 25 q-60 37.5 12.5 12.5 37.5
q-26 50 0 25 25 q-61 37.5 12.5 25 25
q-27 25 50 25 0 q-62 37.5 12.5 37.5 12.5
q-28 25 50 0 25 q-63 37.5 25 12.5 25
q-29 0 50 25 25 q-64 37.5 25 25 12.5
q-30 25 25 50 0 q-65 37.5 37.5 12.5 12.5
q-31 25 0 50 25 q-66 50 12.5 12.5 25
q-32 0 25 50 25 q-67 50 12.5 25 12.5
q-33 25 25 0 50 q-68 50 25 12.5 12.5
q-34 25 0 25 50 q-69 62.5 12.5 12.5 12.5
q-35 0 25 25 50

Supplementary Table S3. List of training and
testing compositions in the 32-atom CrFeCoNi
data set. Note that not all compositions are used for
training. The error in electron density and energy

prediction for these composition is given in Figures S11.

are not included in the final data pool (they are simply
intermediate steps), a great deal of computational re-
sources go into electronic structure calculations that are
— in the context of data generation — unused.

In an effort to leverage a significantly cheaper alter-
native to AIMD, the second option, classical molecular
dynamics (MD), was used generating the atomic configu-
rations for all of the CrFeCoNi system data (quaternary,
ternary, binary, and unary derivatives). Since a quater-
nary system has a higher degree of freedom with respect
to the compositions, a greater number of simulations were
required to obtain an adequate pool of data across com-
position space. Furthermore, each electronic structure
calculation was itself more expensive, due to the inclusion
of semi-core electrons for the atomic species Cr, Fe, Co,
and Ni. Leveraging MD meant introducing an additional
step into the data generation pipeline, but it vastly in-
creased the efficiency at which atomic configurations and
their corresponding electron densities could be obtained.

Lattice constant calculations: One parameter
needed as input in both our MatGL-enabled MD simula-
tions and SPARC-enabled AIMD and static KS-DFT cal-
culations is the lattice constant. For a flexible approach
that allowed for the simulation of any composition choice
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Element
Lattice

Geometry

Lattice
Constant
Obtained

Materials
Project

Reference

Experimental

Reference [3]
Si diamond 5.47 5.44 5.42
Ge diamond 5.76 5.67 5.65
Sn diamond 6.63 6.57 6.46
Cr FCC 3.65 3.58 -
Cr BCC 2.86 2.97 2.88
Fe FCC 3.45 3.66 3.56
Fe BCC 2.76 2.86 2.93
Co FCC 3.45 3.51 3.55
Ni FCC 3.51 3.48 3.52

Supplementary Table S4. Lattice constants obtained
from the pseudopotentials employed in this study, in
units of Angstrom, for the 8-atom diamond unit cell,

the 4-atom face-centered cubic (FCC) unit cell, and the
2-atom body-centered cubic (BCC) unit cell. Values in
bold were leveraged for the rule-of-mixtures appraoch.
Values in italics were not leveraged, but are provided
here to for the purpose of comparison. Note that while

Fe and Co both exhibit FCC phases at higher
temperature, Cr does not have an experimentally

observed FCC phase in nature. The lattice constant for
FCC Cr was used to match the FCC lattice imposed

upon our CrFeCoNi alloy systems.

within our alloy systems, we opted for implementing the
rule-of-mixtures, Vegard’s Law [2]. First, we obtained the
lattice constant predicted for the pure elements Si, Ge,
Sn, Cr, Fe, Co, and Ni by each respective pseudopoten-
tial, imposing the specified lattice geometry. Due to their
impact on the rest of the data generation, these calcula-
tions were done at a higher level of precision. Then, the
lattice constant for any alloy composition was obtained
by taking a weighted average of the lattice constants from
the pure elements, in proportion to the elemental compo-
sition of that alloy. The pure lattice constants are shown
in Table S4. While this is a simplifying assumption, it
was sufficient for our purposes. It is encouraging to note
that when the lattice parameter is relaxed with MatGL,
the optimized lattice parameter obtained is not signifi-
cantly different, as shown in Table S5. As a consequence
the averaged electron density also approximately follows
Vegard’s law. This makes sense because the average elec-
tron density is contingent on the volume, and the volume
of our cubic systems is simply the lattice constant cubed.

Data generation of SiGeSn systems: For SiGeSn,
the fractional coordinates for an 8-atom unit cell of the
diamond lattice structure were scaled up to produce 64-
atom and 216-atom supercells. Atom labels were ran-
domly appended to these coordinates, in accordance with
the desired alloy composition. These initial atomic con-
figurations were then converted to the SPARC-required
format of a .ion file, and the fractional coordinates were
scaled by the lattice constant obtained via Vegard’s Law.
For each .ion file, a corresponding .inpt file containing
the AIMD settings for SPARC was generated. These

Alloy
Composition

M3GNet-
Optimized
Lattice
Constant

Vegard’s Law
Lattice
Constant

Cr 3.61 3.65
Fe 3.46 3.45
Ni 3.50 3.51
Co 3.52 3.45

Cr0.5Fe0.5 3.57 3.55
Fe0.5Ni0.5 3.56 3.48
Ni0.5Co0.5 3.50 3.48
Cr0.5Ni0.5 3.53 3.58

Cr0.25Fe0.5Ni0.25 3.55 3.51
Cr0.5Fe0.25Co0.25 3.55 3.55
Cr0.5Co0.25Ni0.25 3.54 3.57
Fe0.25Co0.25Ni0.5 3.53 3.51

Cr0.25Fe0.25Co0.25Ni0.25 3.54 3.52
Cr0.125Fe0.25Co0.375Ni0.25 3.53 3.49
Cr0.25Fe0.125Co0.25Ni0.375 3.52 3.52
Cr0.25Fe0.375Co0.25Ni0.125 3.55 3.51

Supplementary Table S5. Comparison between unit cell
lattice parameter obtained from volume relaxation with
MatGL and the unit cell lattice parameter obtained
from the rule-of-mixtures weighted average approach
described in the text. These MatGL simulations were
done with 6x6x6 supercells of 864 atoms in FCC lattice
geometry, and the lattice constants shown are scaled
down by a factor of six to allow for facile comparison

with Table S4. Units in Angstrom.

files were then fed into SPARC and allowed to run, gen-
erating an atomic trajectory. After a short equilibra-
tion period to allow the temperature and energy fluctua-
tions to stabilize, snapshots were extracted at fixed inter-
vals and the corresponding electron densities associated
with those snapshots were collected. For the 64-atom
case, there were 45 unique compositions, 4 random initial
atomic configurations for each composition, 1 AIMD tem-
perature (2400K), and 6 snapshots collected from each
AIMD run. This yielded a total of 900 data points. For
the 216-atom case, there were 21 unique compositions, 1
random initial atomic configuration, 1 AIMD tempera-
ture (2400K), and 3 snapshots collected. This yielded a
total of 63 data points. The 216-atom SiGeSn data was
used for testing, while the 64-atom data was used for
both training and testing. See Figure S1 (and Tables
S1 and S2) for the SiGeSn compositions.
Data generation of CrFeCoNi systems: For

CrFeCoNi, the fractional coordinates for a 4-atom unit
cell of the face-centered cubic (FCC) structure were
scaled up to produce 32-atom supercells. Randomly se-
lected atom labels were assigned to the coordinates, in
proportion to the alloy composition. These initial atomic
configurations were converted to a data structure that
MatGL could read, a Python file containing the molecu-
lar dynamics settings was generated, and the molecular
dynamics (MD) simulation was run. Snapshots were col-
lected from the trajectory at fixed intervals after a short
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equilibration time. SPARC was then run, thus produc-
ing the electron densities associated with the extracted
snapshots. For the 32-atom case, there were 69 unique
compositions, 4 random initial atomic configurations per
composition, 4 MD temperatures (4000K, 5000K, 6000K,
7000K), and 7 snapshots collected. This yielded a total
of 7728 data points. The 32-atom data was used for both
training and testing. See Figure S2 (and Tables S3 for
the CrFeCoNi compositions.

Data generation of special SiGeSn sys-
tems: Three forms of additional SiGeSn test
data were produced for model generalizability stud-
ies: monovacancy-containing, divacancy-containing, and
handcrafted ‘checkerboard’ systems (with species segre-
gation). For convenience, the atomsk package [4] was
used in generating some of these system configurations.
For the monovacancy and divacancy data, atom labels
were randomly assigned to the coordinate sites of a pris-
tine 64-atom diamond cubic lattice cell such that the fi-
nal composition matched one of twelve pre-selected com-
positions. To generate a monovacancy-containing sys-
tem, a randomly selected atom that matched the desired
atom type would be removed from the cell. By choos-
ing to remove either a Si, Ge, or Sn atom, each snapshot
produced three derivative data points. To generate a
divacancy-containing system, a randomly selected atom,
and its neighbor would be removed as a pair, produc-
ing one of six possible scenarios: a missing SiSi, GeGe,
SnSn, SiGe, GeSn, or SiSn pair. Since it was also of
interest to see how well the trained model could make
predictions for intersections of bulk elemental regions,
handcrafted ‘checkerboard’ systems were produced. Cu-
bic simulation cells of 64 and 216 atoms occupying di-
amond lattice sites were divided up into smaller cu-
bic sub-regions, i.e. either 8 bins (2x2x2) for the 64-
atom and 216-atom cells, or 27 bins (3x3x3) for the
216-atom cell. Elemental labels were then assigned to
each bin, such that no two neighboring bins contained
the atoms of the same element, with periodic bound-
aries taken into consideration as well. In the 8-bin case,
three compositions were considered: Si0.25Ge0.375Sn0.375,
Si0.375Ge0.25Sn0.375, and Si0.375Ge0.375Sn0.25. In the 27-
bin case, just the equiatomic SiGeSn case was considered
(e.g. Si0.33Ge0.33Sn0.33).
In total, the data generated for this study consisted of:

• 1080 snapshots for the 64-atom SiGeSn system

• 63 snapshots for the 216-atom SiGeSn system

• 7728 snapshots for the 32-atom CrFeCoNi system

• 36 snapshots for the vacancy-containing SiGeSn
systems

• 72 snapshots for the divacancy-containing SiGeSn
systems

• 7 snapshots for the handcrafted, ‘checkerboard’
SiGeSn systems.

It is noted that being able to obtain more data more
quickly with the augmented MD method enhances the
feasibility of further studies with large system sizes and
greater number of alloying elements.
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D. Additional results

Additional supporting plots are presented in this sec-
tion. Figure 8 b in the main text shows a plot of error
in energy for the AL2 model trained on δρ; for the sake
of comparison, Figure S3 shown here presents error in
energy for the AL2 model trained on ρ.
Figure S4 shows density and energy prediction errors

for the larger 216-atom SiGeSn system; recall that only
the 64-atom SiGeSn data was used in the training set.

In Figure 4 in the main text, SiGeSn prediction results
for the Bayesian Active Learning approach are shown.
Figure S5 shows the analogous results for the Tessella-
tion approach. Also, Figure 4 in the main text has the
same colorbar scales for AL1 and AL2 model. This is to
illustrate the decrease in errors obtained from the AL2
model vs. the AL1 model. However, presenting the re-
sults in that fashion inhibits the readability of the AL2
values. To circumvent the readability issue, Figure S6 is
presented below, with separate colorbar scales.

Figures S7, S8 and S9 demonstrate the difference be-
tween ‘ground-truth’ KS-DFT-obtained electron densi-
ties and ML-obtained electron densities for a sample of
systems. Specifically, Figure S7 shows a SiGeSn vacancy-
containing snapshot and Figure S8 shows a thermalized
216-atom SiGeSn snapshot and a thermalized 32-atom
CrFeCoNi snapshot.

Figure 9 in the main text shows key results for the
systems considered in this work, but the results shown
there are aggregated over all compositions. Since the
composition-dependent values may also be of interest,
Figures S10 and S11 plot the error in electron density
and error in energy by composition. Figure S10 shows
the results for the 45 compositions present in the 64-atom
SiGeSn test data. Figure S11 shows the results for the
69 compositions present in the 32-atom CrFeCoNi test
data. Note that the SiGeSn results in Figure S10 come
from a model trained on ρ (the charge density field), while
the CrFeCoNi results in Figure S11 come from a model
trained on δρ (the difference between the charge density
field and atomic densities). In both cases, though, the
density errors displayed are for the charge density itself.
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E. Extension to Quinary System: AlCrFeCoNi

To further illustrate that our methodology works well
for typical high entropy alloys, we trained an additional
model based on the quinary AlCrFeCoNi system, and
focused on near-equiatomic compositions.

The details of this model are as follows. Data was gen-
erated in the same fashion as the quaternary CrFeCoNi
system; a crystalline 32-atom face-centered cubic super-
cell was assigned atom labels corresponding to different
composition percentages. The twenty near-equi-atomic
compositions that were selected for data generation are
shown in Table S6. The crystalline system was set as the
initial configuration for a classical molecular dynamics
simulation performed at 4000K with MatGL [5, 6]. After
an equilibration period of 1000 timesteps (each timestep
is one femtosecond), snapshots were extracted from the
trajectory, at 100-timestep intervals. Data generation
was minimal; only one trajectory per alloy composition
was employed, yielding a total of 10 configuration snap-
shots for each composition (the initial crystalline config-
uration and nine thermalized configurations drawn from
the molecular dynamics trajectory). Twenty composi-
tions with ten configurations each yielded a total data
pool of 200 snapshots for this model.

We constrained our quinary AlCrFeCoNi model to the
face-centered cubic (FCC) system only, neglecting any
potential phase transitions to other lattices. The possi-
bility of exploration of the utility of our ML model across
crystal systems is left as future work.

The architecture of the AlCrFeCoNi neural network
was identical to the other models produced in this study.
The model was trained on data from 16 of the composi-
tions, and the remaining 4 compositions were leveraged
for testing. Since the ρ−SAD approach worked well at
reducing the error metrics in the quaternary system, we
trained the AlCrFeCoNi model using ρ−SAD instead of
just ρ. Model training took only 14 CPU-hours for this
system. Figure 9 in the main text shows the error in
electron density and energy prediction, as obtained from
the 4 near-equiatomic test compositions. The values ob-
tained are just as good in accuracy as those obtained for
the quaternary system, suggesting the successful applica-
tion of the ML model to typical 5-element high entropy
alloy systems.

System
Index % Al % Cr % Fe % Co % Ni
R-1 0 0 0 0 100
R-2 0 0 0 100 0
R-3 0 0 100 0 0
R-4 0 100 0 0 0
R-5 12.5 12.5 25 25 25
R-6 12.5 25 12.5 25 25
R-7 12.5 25 25 12.5 25
R-8 12.5 25 25 25 12.5
R-9 18.75 18.75 18.75 18.75 25
R-10 18.75 18.75 18.75 25 18.75
R-11 18.75 18.75 25 18.75 18.75
R-12 18.75 25 18.75 18.75 18.75
R-13 25 12.5 12.5 25 25
R-14 25 12.5 25 12.5 25
R-15 25 12.5 25 25 12.5
R-16 25 18.75 18.75 18.75 18.75
R-17 25 25 12.5 12.5 25
R-18 25 25 12.5 25 12.5
R-19 25 25 25 12.5 12.5
R-20 100 0 0 0 0

Supplementary Table S6. List of compositions in the
32-atom AlCrFeCoNi data set. Compositions R-8,
R-9, R-10, and R-11 were used for testing and the other
compositions were included in the training dataset. The

four testing compositions were selected at random.
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F. Efficiency Comparison

In the following, we elaborate on how much faster
the ML approach is, for compositional space exploration
compared to the conventional Kohn-Sham Density Func-
tional Theory (KS-DFT) approach. A key feature of the
analysis presented below is the inclusion of “offline” or
training data generation costs, that is often left out in
other similar studies [7]. We consider the following four
systems presented in the paper:

• 64-atom SiGeSn system

• 216-atom SiGeSn system

• 32-atom CrFeCoNi system

• 32-atom AlCrFeCoNi system

For the above four systems we consider the cost of ex-
ploring the composition space. For the purpose of illus-
tration, we presume that we wish to predict the elec-
tron density for 1000 compositions, with 10 multiple dis-
tinct configurations each (disordered alloy properties for
a given composition are often required to be obtained
as averages over several configurations). Given that, the
cost of exploration using KS-DFT will be:

CostDFT = NC ×NS × CDFT (1)

where, NC is the number of compositions, NS is the num-
ber of configurations per composition and CDFT is the
computational cost of a single electron density calcula-
tion via KS-DFT.

The cost of exploration using ML approach will be:

CostML = CostData +CostTraining +CostInference (2)

where, CostData is the training data generation cost,
CostTraining is the cost of training the ML model and
CostInference is the cost of prediction from the ML model.
The cost for training data generation can be calculated
using Equation 1 based on the number of compositions
and configurations used for training only. The cost of
prediction however, will involve prediction at all compo-
sitions and all configurations.

To illustrate our claim of improved efficiency in more
quantitative terms, Table S7 compares the cost of the
KS-DFT approach vs. the ML approach, as determined
from our experiences with data generation and model
training in this study. (Note that the ML model trained
using 64-atom SiGeSn data is used for 216-atom SiGeSn
system as well.) It is evident that the ‘total cost’ val-
ues shown in Table S7 are dependent on the number of
system snapshots to be processed (where the number of
snapshots is equal to ‘number of compositions to obtain
electron densities for’ times ‘number of configurations at
each composition’). At lower snapshot quantities, the
KS-DFT approach is more efficient, because the cost of
training a model presents a higher upfront cost. However,

the cost of using the ML model to predict the density is
much cheaper than the cost of performing a KS-DFT
calculation. Thus, even though the KS-DFT approach
is cheaper at smaller snapshot quantities, as the num-
ber of snapshots for which to obtain electron densities
increases, the efficiency of the ML approach will outper-
form that of KS-DFT. Also note that for the sake of a
fair comparison, all computations relevant to obtaining
these costs were carried out on CPUs (for both KS-DFT
and ML approaches). In realistic deployment scenarios,
ML training, testing and inference would be carried out
GPUs, thus making the large performance gains of the
ML based approach even more likely.

In line with the above discussion, for each system, we
observe a crossover point where the ML approach be-
comes less computationally costly than the KS-DFT ap-
proach. Figure S12 displays these crossover points for
the four models that we trained. The location of the
crossover point depends primarily on how expensive one
KS-DFT calculation is for that system, and also on how
expensive the ML model is to train. Since the 64-atom
SiGeSn, owing to soft pseudopotentials and coarser KS-
DFT calculation meshes, has a very low computational
cost for each KS-DFT calculation (as listed in Table S7),
it takes a larger number of snapshots before the ML ap-
proach overtakes the KS-DFT approach in terms of com-
putational efficiency. Additionally, Figure S13 consoli-
dates the subplots of Figure S12 into a single plot, to
enable a direct comparison of efficiency gains from scal-
ability. We emphasize that the values provided in Table
S7, Figure S12, and Figure S13 reflect the specific models
that we trained, and these values could change depending
on pseudopotential choices, KS-DFT calculation param-
eters, model training choices, and so forth. Nevertheless,
we believe that these examples are illustrative of the ef-
ficiency gains from the ML approach.

Based on the above discussion, and upon looking over
the crossover points shown in Figure S12, we are led
to the fact that the relative efficiency of the KS-DFT
and ML approaches for compositional exploration is ul-
timately dependent on how many compositions are re-
quired for exploration of the composition space for a
given alloy system. Table S8 addresses this question. It is
clear that the number of alloy compositions scales rapidly
with the number of species, as well as fineness with which
the composition space is sampled (i.e., the percentage
increments in each elemental concentration), leading to
a combinatorial explosion that renders exhaustive first-
principles exploration computationally prohibitive. We
also remark that since our KS-DFT calculations do not
use any kind of statistical averaging over atomic con-
figurations, the simulation supercell size directly con-
strains the achievable percentage increments. Smaller in-
crements require larger supercells, which in turn increase
computational cost due to the cubic scaling of KS-DFT
with system size. As a result, the ML-based exploration
approaches presented here become even more attractive
as the number of species grows and/or the desired reso-
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lution in compositional space increases.

place
holder

Comparison
Category

32-atom
CrFeCoNi
Example

64-atom
SiGeSn
Example

216-atom
SiGeSn
Example

32-atom
AlCrFeCoNi
Example

Number of compositions to
obtain electron densities for KS-DFT 1000 1000 1000 1000
Number of configurations

at each composition KS-DFT 10 10 10 10
Cost of a single electron

density calculation, via KS-DFT

(in CPU hours) KS-DFT 0.025 0.005 0.12 0.03
Total cost of KS-DFT approach

(in CPU hours) KS-DFT 250 50 1200 300
Number of compositions to
obtain training data for ML 10 6 6 16
Number of configurations

at each training composition ML 112 24 24 11
Cost of a single electron

density calculation, via KS-DFT

(in CPU hours) ML 0.025 0.005 0.12 0.03
Total cost of training

data generation (in CPU hours) ML 28 0.72 0.72 5.28
Number of compositions to
predict electron densities for ML 1000 1000 1000 1000
Number of configurations at
each prediction composition ML 10 10 10 10

Cost of a single electron density

prediction (in CPU hours) ML 0.0025 0.0028 0.0039 0.0014
Total cost of prediction

(in CPU hours) ML 25 28 39 14
Cost of model training

(in CPU hours) ML 25 29 29 14
Total cost of ML approach

(in CPU hours) ML 78 57.72 68.72 33.28

Supplementary Table S7. Comparison of the computational cost between exploring the composition space of different
alloy systems via the KS-DFT and ML approaches. For the sake of a fair comparison, all computations relevant to
obtaining these costs were carried out on CPUs (for both KS-DFT and ML approaches).

place
holder

3-element
(e.g. SiGeSn)

4-element
(e.g. CrFeCoNi)

5-element
(e.g. AlCrFeCoNi)

Number of compositions for increment of 20% 21 56 126
Number of compositions for increment of 10% 66 286 1,001
Number of compositions for increment of 5% 231 1,771 10,626
Number of compositions for increment of 1% 5,151 17,6851 4,598,126
Number of compositions for increment of 0.1% 501,501 167,668,501 42,084,793,751

Supplementary Table S8. Number of unique alloy compositions needed to fully map the composition space for different
values of increment of the alloying element concentration. This count includes the sub-systems where one or more
elements have 0% concentration. Multiply these numbers by number of unique configurational snapshots in order to
obtain the number of snapshots shown in the x-axis of Figure S12.

G. SAD Baseline Details

In order to appreciate the accuracy of the model pre-
dictions obtained in this study, it is helpful to com-
pare results with suitable baselines. Indeed, it is quite
common in the ML literature to compare new models

against community-accepted baselines, so as to standard-
ize demonstrated performance improvements. However,
at present, there is no community-accepted baseline for
ML models that predict the electron density. Addition-
ally, we are also not aware of other ML models that
predict electron density across composition space for the
ternary and quaternary alloys considered here; this work
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is novel in that regard. Thus, given that our work is
proposing an entire framework, rather than simply im-
proving upon an existing approach, obvious baselines are
not readily available. To address this issue, we have se-
lected the superposition of atomic densities (SAD) [8, 9]
to serve as a baseline model for electron density predic-
tion. Additionally, since our ML models across composi-
tion space are developed using Bayesian Active Learning,
they are compared against models developed by random
selection of compositions. Each of these are discussed
further below.

Our reason for choosing SAD as the baseline model
for electron density prediction is that it has long been
recognized [10–12] to capture a good fraction of the ac-
tual electron density in various systems (a recent study
[9] estimates it to be ∼85% accurate in getting the elec-
tron density of molecular systems). Furthermore, SAD
are inexpensive to compute (no KS-DFT calculations
are needed). Since our ML models are trained on KS-
DFT data, which do contain atomic bonding information,
while the SAD do not, the SAD make for a convenient
baseline. Notably, as mentioned in the main text, we al-
ready utilize SAD in our work; we provided an example
of a CrFeCoNi model trained on the difference between
electron density and SAD (i.e. ρ−SAD) and found that
this approach was effective for error reduction.

To obtain our own assessment of the “baseline” error
that results from just using the SAD, we compute this
quantity as a field over the grid points (which we already
had to do when using our ρ−SAD model training ap-
proach). Thereafter, we treat it as if the values were pre-
dicted by an ML model, and calculate the density errors
and post-process the field to obtain energy errors. We
performed this analysis for 455 snapshots across the 69
compositions that comprised the quaternary CrFeCoNi
dataset. The results are displayed in Fig. 9 of the main
text. The performance improvements of our ML models
compared to the SAD baseline are evident.

To get a sense of the baseline errors while predicting
across composition space, and to demonstrate the ad-
vantage of the Bayesian AL technique over the random
selection of compositions, we have compared the errors
from these two approaches in Fig. 14 of the main text.
In this comparison, both approaches used the same num-
ber of compositions and the same amount of data. The
advantage of the Bayesian AL technique is evident from
the error plot. Three different sets of 20 randomly chosen
compositions were used to develop three ML models and
their errors are shown in the Fig. 14 of the main text (er-
ror bars indicate the range of maximum NRMSE values
observed across the three models).



10

[1] S. Pathrudkar, P. Thiagarajan, S. Agarwal, A. S. Baner-
jee, and S. Ghosh, npj Computational Materials 10, 175
(2024).

[2] K. Jacob, S. Raj, and L. Rannesh, International Journal
of Materials Research 98, 776 (2007).

[3] C. Barrett and T. Massalski, Structure of Metals
(McGraw-Hill, 1966) pp. Appendix VII, pg. 552.

[4] P. Hirel, Computer Physics Communications 197, 212
(2015).

[5] C. Chen, Y. Zuo, W. Ye, X. Li, and S. P. Ong, Nature
Computational Science 1, 46 (2021).

[6] C. Chen and S. P. Ong, Nature Computational Science
2, 718 (2022).

[7] Y. S. Teh, S. Ghosh, and K. Bhattacharya, Mechanics of
Materials 163, 104070 (2021).

[8] P. B. Jørgensen and A. Bhowmik, npj Computational
Materials 8, 183 (2022).

[9] C. Li, O. Sharir, S. Yuan, and G. K.-L. Chan, Nature
Communications 16, 4811 (2025).

[10] A. Read and R. Needs, Journal of Physics: Condensed
Matter 1, 7565 (1989).

[11] W. Foulkes, Physical Review B 48, 14216 (1993).
[12] G. D. Bellchambers and F. Manby, The Journal of chem-

ical physics 135 (2011).



11

Supplementary Figure S1. Training and Testing
compositions in the SiGeSn data set. Points in
blue indicate the 64-atom data set. Note that, only a
subset of compositions are used for training. Points in

red indicate the 216-atom data set (not used in
training). Points in yellow indicate compositions

present in both the 64-atom and 216-atom data sets.
See Tables S1 and S2 for the full list of values.
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Supplementary Figure S2. Training and testing
compositions in the 32-atom CrFeCoNi data set.

Points in blue indicate the true quaternary
compositions, while points in red indicate ternary,

binary, and unary derivatives. Note that, only a subset
of compositions are used for training. See Table S3 for

the full list of values.

Supplementary Figure S3. Error in energy for the
quaternary CrFeCoNi system for the model

trained with charge density ρ instead of δρ. The
plot shows the average error in energy at test

compositions for the pristine 32-atom CrFeCoNi data
set, expressed in Hartree per atom (Ha/atom). The

order of magnitude of the colorbar is 10−3.
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Supplementary Figure S4. Error for ternary system beyond training compositions and training system
size. With a 64 atom ternary system, a limited number of test compositions is possible. We used a bigger 216-atom

system to obtain intermediate test compositions, not possible with the 64 atom system. Left: Average errors in
energy at test compositions for the pristine 216-atom SiGeSn data set, using the AL2 model. Units: Hartree/atom.
Note that the order of magnitude of the colorbar is 10−3. Right: Average error in density at test compositions for

the pristine 216-atom SiGeSn data set, in terms of relative L1, using the AL2 model. Note that the order of
magnitude of the colorbar is 10−2.
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(a)T1:ρ

(c)T2:ρ (d)T2:
Energy

(e)T4:ρ (f)T4:
Energy

(b)T1:
Energy

Supplementary Figure S5. Tessellation based approach to iteratively select training compositions to
accurately predict across composition space of Ternary alloy. (a) NRMSE across the composition space
after 1st iteration of Tessellation based iterative learning. The model is trained using only 3 pure compositions
shown using white circles in the figure. This model is termed as T1. (b) Energy prediction error across the
composition space after 1st iteration of Tessellation. This model, termed as T1, is trained only for 3 pure

compositions. (c) NRMSE across the composition space after 2nd iteration of Tessellation. Three additional training
points. This model is termed as T2. (d) Error in energy prediction across composition space. The unit of energy

error is Ha/atom. The predicted energy is obtained from ρ predictions from T2. The energy error is within chemical
accuracy across the composition space. (e) NRMSE across the composition space after 4th iteration of Tessellation,
resulting in nine additional training points from T2. This model is termed as T2. (f) Energy prediction error across

the composition space after 4th iteration of Tessellation. This model, termed as T4, is trained only for 15
compositions.
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(a)AL1:ρ

(b)AL1:
Energy

(c)AL1:UQ

(d)AL2:ρ

(e)AL2:
Energy

(f)AL2:UQ

Supplementary Figure S6. Bayesian Active Learning to iteratively select training compositions to
accurately predict across composition space of Ternary alloy. (a) NRMSE across the composition space
after 1st iteration of Active Learning, termed as AL1, trained using only 3 pure compositions shown using white

circles. (b) Energy prediction error for model AL1 with 3 pure composition. (c) Epistemic Uncertainty in ρ
prediction across composition space after prediction with model AL1. Query points (additional training points) for
the next iteration of Bayesian Active Learning are selected based on highest uncertainty regions shown in ‘f’. (d)

NRMSE across the composition space after 2nd iteration of Active Learning. 3 additional training points are added
as per the uncertainty contour in subfigure, ‘c’. This model is termed as AL2. We observe that the NRMSE is low
and consistent across the composition space showing the effectiveness of query points selection through uncertainty.
(e) Error in energy prediction across composition space. The unit of energy error is Ha/atom. The predicted energy

is obtained from ρ predictions from AL2. The energy error is within chemical accuracy across the composition
space. (f) Epistemic Uncertainty in ρ prediction across composition space after prediction with model AL2.
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Supplementary Figure S7. Electron densities (a) calculated from KS-DFT and (b) predicted by ML and the
absolute difference between them (c) for a vacancy defect for SiGeSn. The snapshot corresponds to 64 atom

Si29.7Ge29.7Sn40.6 simulation cell at 2400K with an Sn vacancy. The ternary AL2 model was used here.
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Supplementary Figure S8. Electron densities (a, d) calculated by KS-DFT and (b, e) predicted by ML and the Error

(absolute difference) between them (c, f) for SiGeSn (a, b, c) and CrFeCoNi (d, e, f), using the AL2 model.
Subplots (a, b, c) correspond to a 216-atom Si33.3Ge33.3Sn33.3 simulation cell at 2400K for the handcrafted systems

featuring species segregation. Subplots (d, e, f) are 32-atom simulation cells at 5000K corresponding to
Cr25Fe25Ni25Co25 for the ρ model. The values refer to the iso-surface values.
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Supplementary Figure S9. Electron densities (a) calculated by KS-DFT and (b) predicted by ML and the Error

(absolute difference) between them (c) for SiGeSn (a, b, c) using the AL2 model. Subplots (a, b, c) correspond to a
216-atom Si33.3Ge33.3Sn33.3 simulation cell at 2400K same as Figure S8 for the handcrafted systems featuring

species segregation visualized in the xy plane. The values refer to the iso-surface values. Blue, red and turquoise
spheres represents Si, Ge, and Sn atoms, respectively.
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Supplementary Figure S10. Plot of average energy and density errors, by composition, for the pristine 64-atom
SiGeSn test data. The ternary AL2 model was used here. The results are averaged over all snapshots available for

each given composition. : Density Error, : Energy Error
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Supplementary Figure S11. Plot of average energy and density errors, by composition, for the pristine 32-atom
CrFeCoNi test data (trained on the difference between the charge density field and the atomic densities). The

quaternary AL3 model was used here. : Density Error, : Energy Error
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Supplementary Figure S12. Snapshots vs. Total Cost. These subplots show the crossover point where the ML
method becomes less computationally costly compared to the KS-DFT method. The primary cost of the ML

method is the upfront cost of training the model. The crossover point arises since the cost of generating a prediction
from the model is much cheaper that the cost of performing a full KS-DFT calculation. Each system will have a
different crossover point, depending on the expense of a KS-DFT calculation for that system and on the setup

choices for the ML model. The crossover points shown here are for four example systems that were considered in
this work; the assumptions made to produce these subplots are shown in Table S7. The crossover point for the

64-atom SiGeSn system is higher due to the low cost of the KS-DFT calculation; the number of valence electrons
considered was minimal due to the p-block location of the elements. The number of snapshots shown on the x-axis
of these subplots is obtained by multiplying the number of compositions by the number of configurational snapshots
at each composition. An overview of the number of compositions that would be needed to explore the composition
space in different increment sizes is shown in Table S8. Additionally, for a direct comparison of all four systems,
Figure S13 consolidates these four subplots into a single plot. Note that, for the sake of a fair comparison, all

computations relevant to obtaining these costs were carried out on CPUs (for both KS-DFT and ML approaches).
: ML method, : DFT method
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Supplementary Figure S13. Consolidated Plot. This graph presents the data from Figure S12 into a single
logarithmic plot to allow for more direct comparison between systems. Notice that, in each case, the ML costs

(shown in blue) have a higher starting value, but they soon overtake the KS-DFT costs (shown in red) in terms of
efficiency as the number of snapshots to obtain electron densities for increases. Note that, for the sake of a fair

comparison, all computations relevant to obtaining these costs were carried out on CPUs (for both KS-DFT and ML
approaches). : DFT method, 32-atom CrFeCoNi, : ML method, 32-atom CrFeCoNi, : DFT method,
64-atom SiGeSn, : ML method, 64-atom SiGeSn, : DFT method, 216-atom SiGeSn, : ML method,

216-atom SiGeSn, : DFT method, 32-atom AlCrFeCoNi, : ML method, 32-atom AlCrFeCoNi.


