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Weproposemachine learning (ML)models topredict theelectrondensity— the fundamental unknown
of a material’s ground state— across the composition space of concentrated alloys. From this, other
physical properties can be inferred, enabling accelerated exploration. A significant challenge is that
the number of descriptors and sampled compositions required for accurate prediction grows rapidly
with species. To address this, we employBayesianActive Learning (AL), whichminimizes training data
requirements by leveraging uncertainty quantification capabilities of Bayesian Neural Networks.
Compared to the strategic tessellation of the composition space, Bayesian-AL reduces the number of
training data points by a factor of 2.5 for ternary (SiGeSn) and 1.7 for quaternary (CrFeCoNi) systems.
We also introduce easy-to-optimize, body-attached-frame descriptors, which respect physical
symmetries while keeping descriptor-vector size nearly constant as alloy complexity increases. Our
ML models demonstrate high accuracy and generalizability in predicting both electron density and
energy across composition space.

Electronic structure calculations, based on Kohn-Sham Density Functional
Theory (KS-DFT)1–3, serve as the workhorse of computational materials
science simulations. The fundamental unknown in KS-DFT calculations is
the ground state electron density, from which a wealth of material infor-
mation — including structural parameters, elastic constants, and material
stability (e.g., phonon spectrum) — may be inferred. Compared to more
elaborate wave-function-based quantum chemistry methods or simpler
electronic structure techniques based on tight-binding, KS-DFT often offers
a good balance between physical accuracy, transferability and computa-
tional efficiency, leading to its widespread use4.

In spite of itsmany successes, KS-DFT is often practically limited by its
cubic scaling computational cost with respect to the number of simulated
atoms. While calculations involving just a few atoms within the computa-
tional unit cell can be executed with ease — making high-throughput
screening5–7 and large-scale materials data repositories possible (e.g., the
Materials Project8,9) — larger calculations often need to employ extensive
high-performance computing resources or specialized solution
techniques10–16. Thus, routine calculations of a wide variety of important
materials problems, e.g., the behavior of defects at realistic concentration17

and simulations of moirè superlattices18, continue to be far from routine, or

altogether computationally infeasible, with state-of-the-art KS-DFT
implementations. Along these lines, simulations of disordered solids19,20,
specifically, multi-element concentrated alloys featuring chemical disorder,
represent a significant challenge. Indeed, the computational unit cell
required to simulate medium and high entropy alloys at generic composi-
tions can get arbitrarily large, with the number of simulated atoms growing
proportionally high. Thus, in spite of the technological relevance of such
materials21, directfirst-principles evaluationof theirmaterial properties over
the entire composition space often remains computationally out of reach,
unless approximations in KS-DFT calculations or special structural sam-
pling techniques are used22–25.

Recently, electronic structure predictions usingmachine learning (ML)
have gained a lot of attention and shown promise for various systems. The
vast majority of such studies have focused on prediction of the electron
density field26–32, although a number of studies have also carried out pre-
dictions of the single and two particle density matrices33–36. In essence, ML
techniques for field prediction serve as surrogate models for KS-DFT,
enabling inexpensive evaluation of the electron density and related fields37

fromatomic configurations, once trained. Thepredicted density canbe used
to compute various other downstream quantities, including the system’s

1Department of Mechanical and Aerospace Engineering, Michigan Technological University, Houghton, MI, USA. 2Department of Materials Science and Engi-
neering, University of California, Los Angeles, CA, USA. 3Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
4Center for Artificial Intelligence, Michigan Technological University, Houghton, MI, USA. e-mail: susantag@mtu.edu; asbanerjee@ucla.edu

npj Computational Materials |          (2025) 11:378 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01856-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01856-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-025-01856-3&domain=pdf
http://orcid.org/0000-0001-8546-8056
http://orcid.org/0000-0001-8546-8056
http://orcid.org/0000-0001-8546-8056
http://orcid.org/0000-0001-8546-8056
http://orcid.org/0000-0001-8546-8056
http://orcid.org/0009-0009-2127-6536
http://orcid.org/0009-0009-2127-6536
http://orcid.org/0009-0009-2127-6536
http://orcid.org/0009-0009-2127-6536
http://orcid.org/0009-0009-2127-6536
http://orcid.org/0000-0003-3946-3902
http://orcid.org/0000-0003-3946-3902
http://orcid.org/0000-0003-3946-3902
http://orcid.org/0000-0003-3946-3902
http://orcid.org/0000-0003-3946-3902
http://orcid.org/0000-0001-9231-5461
http://orcid.org/0000-0001-9231-5461
http://orcid.org/0000-0001-9231-5461
http://orcid.org/0000-0001-9231-5461
http://orcid.org/0000-0001-9231-5461
http://orcid.org/0000-0001-9000-3405
http://orcid.org/0000-0001-9000-3405
http://orcid.org/0000-0001-9000-3405
http://orcid.org/0000-0001-9000-3405
http://orcid.org/0000-0001-9000-3405
http://orcid.org/0000-0002-6262-4121
http://orcid.org/0000-0002-6262-4121
http://orcid.org/0000-0002-6262-4121
http://orcid.org/0000-0002-6262-4121
http://orcid.org/0000-0002-6262-4121
http://orcid.org/0000-0001-5916-9167
http://orcid.org/0000-0001-5916-9167
http://orcid.org/0000-0001-5916-9167
http://orcid.org/0000-0001-5916-9167
http://orcid.org/0000-0001-5916-9167
mailto:susantag@mtu.edu
mailto:asbanerjee@ucla.edu
www.nature.com/npjcompumats


energy32, electronic band diagrams38 or properties of defects39. Some of these
ML models use global system descriptors, e.g. strains commensurate with
the system geometry37,38, and are trained on KS-DFT data generated using
specialized symmetry-adapted simulation techniques40–42. The vast major-
ity, however, employ descriptors of the local atomic environment and are
trained on KS-DFT data from standard codes, e.g. ones based on plane-
waves. The output of the ML model, i.e., the electron density itself, can be
represented in different ways. One strategy involves expanding the density
as a sumof atom-centered basis functions27,32,43–46, while another predicts the
electron density at each grid point within a simulation cell27,29,47–51. The first
strategy is efficient but can be less accurate, as complex electron densities
maynot always be representablewith a small number of basis functions.The
second strategy is accurate but computationally expensive, as it requiresML
model evaluation over a fine mesh of the simulation cell. However, it is
amenable to easy parallelization based on domain decomposition and the
evaluation process scales linearlywith the systemsize30,47. Yet another recent
approach52 predicts the entirety of the electron density field, using super-
position of the atomic densities (SAD) as the input. This approach is effi-
cient, since it can use a convolutional model to predict the electron density
over a volume, avoiding tedious grid point-wise inference. This approach is
also accurate as it incorporates materials physics through the SAD. How-
ever, this method does not inherently accommodate the system’s rotational
symmetries, and integrating uncertainty quantification (UQ) features pre-
sents a challenge—bothaspects that aremore readily addressedby theother
approaches. Finally, equivariant graph neural networks offer an elegant,
end-to-end alternative that learns symmetry-preserving representations
directly on atomistic graphs, and have been used for a variety of compu-
tational tasks, including electron density27,53 and phonon-spectrum
prediction54. In graph-based models, the descriptors are not specified a
priori but are learned during training. This flexibility often entails higher
inference cost per structure— particularly in high-throughput settings55,56.

While previous studies have carried out ML-based electron density
predictions for various molecular systems, pure bulk metals, and some
specific alloys26,28–30,47,52,57,58, the issue of electron density prediction for
arbitrary compositions of concentrated multi-element alloys has not yet
been addressed. Indeed, ML techniques have been applied to a variety of
other properties of such systems59–64, but the ability to predict their electron
density, i.e., the fundamental unknown of the material’s ground state,
remains an attractive unattained goal. Such predictive capabilities, if rea-
lized, may help overcome the aforementioned limitations of KS-DFT in
simulating medium and high entropy alloys, and in turn, help accelerate
exploration of new materials, e.g., alloys for next-generation microelec-
tronics and novel magnetic storage systems65,66. The key challenge to pre-
dicting fields such as the electron density for concentrated multi-element
alloy systems is that, due to combinatorial reasons, the number of compo-
sitions that need to be sampled for the development of accurateMLmodels
can be very high. Hence, the cost of data generation for developing ML
models that work equally well across the composition space also tends to be
very high. Therefore, an open question is whether it is possible to produce
accurate predictions for the entire composition space of multi-element
alloys while limiting the data required to train the ML model. Indeed,
compared to low-dimensional material parameters, such as elastic moduli
or thermal expansion coefficients67, these data-related challenges can be far
more severe for predicting fields.

In recent years, significant progress has been made in using machine
learning forhigh entropy alloys (HEAs), particularlywith the aidofmachine
learning interatomic potentials (MLIPs)68,69. Many of these studies rely on
highly exhaustive sets of training data70–72. Although these works present
accurate MLIPs, the extensive training data required to achieve such
accuracy is a limitation. For instance, theMo-Nb-Ta-V-W training data set
from ref. 70 includes single isolated atoms, dimers, pure elements, binary to
quinary bcc alloys, equiatomic HEAs, and ordered/disordered structures.
Additionally, the dataset covers liquid alloys, vacancies, and interstitial
atoms. In71, data for quaternary MoNbTaW is generated via ab initio
molecular dynamics (AIMD) for random alloy compositions at 500K, 1000

K, and 1500 K, with 2% variation in lattice parameters, and single point
calculations involve random alloys with 2% variation in volume and lattice
angles. Along the same lines, in ref. 72, in order to develop an interatomic
potential for Lithium lanthanum zirconium oxide (LLZO) systems, the
training set consisted of three components: (1) elemental materials and
scaled structures for Li, La, Zr, and O; (2) structures from first-principles
molecular dynamics simulations of LLZOcrystals and amorphous phases at
various temperatures; and (3) a two-body potential to constrain interatomic
distances duringmolecular dynamics simulations. These different examples
serve to highlight the fact that although it is possible to develop accurate
interatomic potentials for medium to high entropy alloys, the training set
often requires a large amount of staticKS-DFT andAIMDsimulations.Our
work aims at accurately predicting the electron density of HEAs across the
composition space while limiting the number of KS-DFT/AIMD simula-
tions required to generate the training data.

One major criticism of machine learning models is their lack of gen-
eralization, i.e., their inability to predict beyond the training data accurately.
Indeed, the use of a large number of different configurations for generating
training data of MLIPs as described above is also related to improving
generalizability. In a recent work47, the authors demonstrated that the uti-
lization of data generated at high temperatures and the ensemble averaging
nature of Bayesian Neural Networks can enhance the generalization ability
of ML-based electron density prediction. This approach yielded highly
accurate predictions for bulk aluminum (Al) and silicon germanium (SiGe)
systems. More importantly, it exhibited generalization capability by accu-
rately predicting a variety of test systems with structural features not
included in the training data, such as edge and screw dislocations, grain
boundaries, andmono-vacancyanddi-vacancydefects. Thismodelwas also
shown tobe capable of generalizing to systems significantly larger than those
used for training and can reliably predict the electron density for multi-
million-atom systems using only modest computational resources. The
potential of this ML electron density model to generalize to arbitrary alloy
compositions is explored in this work. As a starting point, we found that for
the SiGe system, learning the binary alloy electron density at a fixed com-
position allows for reasonably accurate extrapolation to nearby composi-
tions. This raises the question ofwhether such extrapolation applies tomore
complex systems, and if so, the minimum data needed to learn across
composition space. We explore these questions here, in the context of
ternary SiGeSn and quaternary CrFeCoNi systems.

Medium entropy alloy (MEA) and high entropy alloy (HEA) systems
provide an opportunity to expose ourmodels to a compositionally complex
materials space. Thus, after investigating SiGe, it was a natural choice to
extend to the ternary systemSiGeSn.Group IValloys in the Si-Ge-Sn system
are of great interest to the optoelectronics industry, due to their utility for
bandgap engineering. Notably, the addition of Sn is purported to lower the
bandgap and produce an indirect-to-direct bandgap transition whose
location is tunable within the SiGeSn composition space73,74. The primary
challenge related to the implementation and usage of ternary SiGeSn is that
it is difficult to synthesize many of the compositions experimentally75. The
SiGe phase diagram shows that Si and Ge are fully soluble in each other76,77.
In contrast, Sn is barely soluble in Si or Ge; it can be difficult to obtain
compositions above a few percent. Despite this, recent research develop-
ments have continued to push the limit of Sn incorporation78. In light of the
experimental progress towards synthesizing such systems, there is interest in
predicting the composition windows to aim for with respect to obtaining
desired property targets, and this continues to be an active area of
research79,80 — thus motivating our choice. In addition to SiGeSn, we also
wished to test how our methodology performs against a more challenging
bulk metallic alloy system. Given the Cantor alloy’s status as the most well-
studied HEA to date, we selected a quaternary Cantor alloy variant CrFe-
CoNi, and explored it across composition space. We also investigated a
more traditional quinaryHEA,AlCrFeCoNi, near equiatomic composition,
for the sake of completeness. The quaternary alloy system is much easier to
experimentally synthesize, as it forms solid solution phasesmore readily. Its
mechanical properties— notably the high ductility and fracture toughness
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— have led to a large volume of research studies focusing on this system81.
Furthermore, CrFeCoNi has also received interest in the field of nuclear
materials for its highdamage toleranceunder irradiation; for instance,defect
growth in CrFeCoNi is over 40 times slower compared to pure Ni82.
Interestingly, despite the vast quantity of HEA research, the overwhelming
majority of studies have tended to solely focus on equiatomic compositions
(such as Cr0.25Fe0.25Co0.25Ni0.25). This is a bit surprising, considering that
the idea of exploiting the high degree of freedom in compositional space for
improved property design has been around since the beginning of the field.
Yet, as case studies have emerged demonstrating that improvedmechanical
properties can be obtained with non-equiatomic HEA systems, interest in
this direction has grown. Currently, there exists a great deal of research
momentum towards moving beyond equiatomic compositions and
exploring material property maps across composition space, ultimately
motivating our choice of this alloy system.

To address these complex alloy systems, we employed the following
three key strategies to achieve highly accurate and reliable predictions across
composition space while minimizing the required training data. The sche-
matics of our proposed ML model is shown in Fig. 1.

First, we developed an uncertainty quantification (UQ)-based Active
Learning (AL) approach for the electron density to select the most infor-
mative compositions and add them to the training data in each iteration,
aiming to minimize the overall training data. The UQ capability of the
Bayesian Neural Network is utilized to efficiently quantify uncertainty;
hence, this AL approach is referred to as Bayesian Active Learning (Baye-
sian-AL). The compositions corresponding to the highest uncertainty are
considered the most informative for the next iteration of AL.

Second, we introduced novel descriptors for which the descriptor-
vector size does not increase significantlywith the number of alloy elements.
The sizes of many existing descriptors rapidly increase with the number of
distinct chemical elements in the system, which is a key challenge formulti-
element alloy systems83,84. Our descriptors are position vectors in a body-
attached frame and incorporate species information through the atomic
number. Thus, they do not depend on the number of distinct chemical
elements that may be present, for a fixed number of atoms in the neigh-
borhood. Furthermore, our descriptors also facilitate the selection of the
optimal set of descriptors.

Third, we trained our model on the difference between total densities
and atomic densities, rather than solely on total densities. Observing that a
model trained just on the superposition of atomic densities (SAD) can
obtain nearly 85% accuracy in density prediction52, we presumed that using
the difference between total densities and atomic densitieswould allow for a
higher resolutiondescriptionof the chemical bonding inourmodel. Inother
words, if the complexity of the quantum-mechanical chemical bonding
environment contributes about only about 15% accuracy overall, then
training the model on the difference between total and atomic densities
should help to improve its sensitivity to the fundamental chemistry present
in a given system. In light of this, we have trained a separate ML model to

predict the difference between the electron density and the SAD, which we
refer to as the δρ ML model. This model is found to be more accurate in
energy predictions for CrFeCoNi systems (which involve elements with
hard pseudopotentials and semi-core states), in line with the above
reasoning.

These three methodological innovations ultimately resulted in highly
accurate ML models, generalizable across the full composition space of the
respective alloy systems, as demonstrated in the following Results section.
Additional results involving a high entropy quinary system (AlCrFeCoNi)
are presented in the Supplementary Materials. We also note that our con-
tribution is quite exhaustive, in that a whole plethora of ML models —
involving different materials systems (i.e., binary, ternary, and quaternary
alloys), different levels of Bayesian Active Learning, different levels of
tessellation-based training, and different predicted quantities (i.e., ρ and δρ
basedmodels)—were carefully developed and extensively tested. The high-
quality predictions obtained by our ML models give us confidence that the
techniques described above can be easily extended to other bulk high-
entropy materials, or emergent low-dimensional functional materials fea-
turing chemical complexity and disorder, e.g., high entropyMXenes85,86 and
high entropy 2D transition metal dichalcogenides87.

Finally, when required, we accelerated the data generation process by
judiciously integrating ML interatomic potentials with KS-DFT calcula-
tions, in lieu of full ab initio molecular dynamics simulations. This further
accelerates the development of our ML models.

Results
This section evaluates the accuracy of the proposed machine learning (ML)
model in comparison to the ground-truth, i.e., KS-DFT. Since the focus of
this work is on electron density prediction for alloys, three systems have
been considered as prototypical examples: a binary alloy — SixGe1−x, a
medium entropy ternary alloy— SixGeySn1−x−y, and a high entropy qua-
ternary alloy — CrxFeyCozNi1−x−y−z. Though the developed ML frame-
work should be applicable to any alloy with any number of elemental
species,wepresent results for the aforementioned technologically important
alloys73,75,76,78,81,88–98. The error in electron density prediction is measured
using two metrics: Normalized Root Mean Squared Error (NRMSE) and
relative L1 error (% L1)

28 (see Supplementary Material for further details).
At the onset, we made an attempt to develop an ML model that is

accurate for all compositions of a binary alloy. It is found that a model
trainedwith equiatomic SiGe (SixGe1−xwith x=0.5) achieves high accuracy
in the vicinity of the training composition (x = 0.5), as illustrated in Fig. 2a.
However, the error grows as the distance between the training and testing
compositions increases in the composition space. If only two compositions
that have the highest error are added to the training data the accuracy
increases across the entire composition space, as shown in Fig. 2b. This
experiment demonstrates that retraining theMLmodel with the addition of
a few compositionswith the highest error enables accurate prediction across
the entire composition space. However, as the number of alloying elements
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Fig. 1 | Schematic representation of our Machine Learning model showing
descriptor generation and mapping to electron density using Bayesian Neural
Network.The process beginswith calculating atomic neighborhood descriptorsD(i)
at each grid point, i, for the provided atomic configuration snapshot in the training
data. A Bayesian Neural Network is trained to provide a probabilistic map from the
atomic neighborhood descriptors D(i) to the electronic charge density and

corresponding uncertaintymeasure at grid point, i. Application of the trainedmodel
to generate charge density predictions for a given new query configuration requires:
descriptor generation for the query configuration, forward propagation through the
Bayesian Neural Network, and aggregation of the point-wise charge density pre-
dictions ρ(i) and uncertainty values to obtain the charge density field ρ and uncer-
tainty field, respectively.
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increases, the number of possible compositions in the composition space
grows rapidly, making it challenging to simulate all compositions through
KS-DFT. Therefore, the errors for all compositions will not be available to
identify the most erroneous compositions to include in the next round of
training. To address the aforementioned challenge, we propose two sys-
tematic iterative training approaches for selecting optimal compositions for
training the model: (i) an Uncertainty Quantification (UQ)-based Active
Learning technique (referred to as Bayesian Active Learning) and (ii) a
Tessellation-based iterative training technique.

Minimizing the training data: Bayesian active learning and
tessellation
In this section, we compare the performance of the Bayesian Active
Learning approach and the Tessellation-based iterative training approach.
The Tessellation approach involves a systematic, progressively refined dis-
cretization of the composition space to obtain training compositions. In
contrast, the BayesianActive Learning usesuncertaintymeasures to identify
themost informative training compositions, thereby bypassing the need for
knowledge of errors at all compositions.

The training compositions obtained through progressively refined
tessellation-based discretization of the composition space are shown in
Fig. 3. For the tessellation-basedMLmodels, T1,T2, andT4contain3, 6, and
15 training compositions for ternary (e.g., SiGeSn) systems, and4, 11, and34
training compositions for quaternary (e.g.,CrFeCoNi) systems, respectively.

In the case of Bayesian Active Learning, we iteratively add alloy
compositions to the training set. For the ternary system, Bayesian AL starts
with three training compositions as shown by white circles in Fig. 4a. This
model is referred to asAL1, and the errors in theρ and energy formodelAL1
are shown in Fig. 4a, b. Based on theUncertaintymeasure, shown in Fig. 4c,
three additional training compositions corresponding to the highest
uncertainty are chosen and are added to the training set. Themodel trained

with these six training compositions, is referred to as AL2 and the errors in
the ρ and energy for model AL2 are shown in Fig. 4d, e. Further details on
these errors are given in Fig. S6d, e of the SupplementaryMaterial. Similarly,
for the quaternary system, the training compositions used in Bayesian
Active Learning models AL1, AL2, and AL3 are shown in Fig. 5. Note that
the errors in the electron density are computed for all compositions to
illustrate the variation across the composition space. Although all compo-
sitions are simulated for error calculation, only a fraction of them are used
for training, as shown in Figs. 3 and 5. Detailed explanations of both the
Bayesian Active Learning and Tessellation approaches can be found in the
Methods section.

For the ternary SiGeSn alloy, errors in the electron density across the
composition space for each iteration of both approaches are presented in
Fig. 6. The initial iteration for both the Bayesian Active Learning (AL1) and
Tessellation (T1) approaches is identical, as they each begin with 3 training
compositions containing the pure elements silicon, germanium, and tin.
Bayesian Active Learning requires only 6 training compositions (in AL2) to
achieve slightly greater accuracy compared to the 15 needed by the Tes-
sellation approach (in T4). The Tessellation approach performs well,
requiring only 15 compositions to accurately predict across the composition
space. However, the AL approach demonstrates superior efficiency com-
pared to the systematic Tessellation method. The error in energy for each
iteration of both approaches is shown in Fig. 7. The Bayesian Active
Learning basedmodel trained on 6 compositions (AL2) is enough to obtain
chemically accurate energy predictions. Thus, for the ternary system,
BayesianActive Learning achieves a reductionby a factor of 2.5 in the cost of
data generation compared to Tessellation.

Similarly, the results for the quaternary alloy, CrFeCoNi, are shown in
Fig. 6. The initial iteration for both the Bayesian Active Learning (AL1) and
Tessellation (T1) approaches is identical, as they each begin with 4 training
compositions containing the pure elements chromium, iron, cobalt, and
nickel. Bayesian Active Learning requires only 20 training compositions (in
AL3) to achieve much better accuracy compared to the 34 needed by the
Tessellation approach (in T4). The error in energy for each iteration of both
approaches is shown in Fig. 7. For Bayesian Active Learning, 20 composi-
tions (AL3) are sufficient to achieve energy predictions as accurate as those
obtained with the Tessellation approach using 34 compositions (T4). These
results for the quaternary system further demonstrate that while Tessella-
tion is a reasonable approach, Bayesian Active Learning offers a significant
advantage, reducing the cost of data generation by a factor of 1.7 compared
to Tessellation. Even though only 34 out of 69 points are on the boundary,

Fig. 3 | Training compositions for three levels of tessellation (T1, T2 and T4).The
red dots show training compositions. The top row shows compositions for the
ternary (SiGeSn) system and the bottom row shows compositions for the quaternary
(CrFeCoNi) system. Note that we train the model T4 with the 4th iteration of
tessellation, because the training compositions in the third iteration exclude avail-
able training compositions from the second iteration. The star depicts an additional
point considered in the quaternary T2 model to capture information in the center,
approximating the octahedron in the second tessellation of the tetrahedron.

a

b

Fig. 2 | Iterative training for accurate prediction across composition space of
binary alloy. a Error in ρ prediction for SixGe1−x, where themodel was trained using
only x= 0.50 and tested on all x≠ 0.50. bError in ρ prediction for SixGe1−x, where the
model was trained using x = 0, 0.50, 1.00 and tested at other compositions. The error
across the entire composition space reduces significantly with the addition of only
two extra training compositions. : Training, : Testing.
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the training points in AL2 and AL3 for the quaternary system are mostly
positioned on the boundary of the composition space, with the exception of
one point, see Fig. 5. This suggests that the points on the boundaries contain
more valuable information for the ML model to learn from.

Generalization
To showcase the generalization capabilities of the model, we tested the
model on various test cases that are not used in the training and often
significantly different from the training data, including (i) systems with
compositions not used in training, (ii) systems with vacancy defects, (iii)

‘checkerboard’ systemswith clusters of atoms from the same species. For all
these test systems, we assess the error in density prediction, as well as the
error in energy obtained by postprocessing the predicted densities. Relative
L1 errors in the prediction of ρ for these testing cases are shown in Fig. 8 for
both ternary and quaternary alloys. For the ternary alloy, the model was
trainedon64-atomsystems,whereas for thequaternary alloy, themodelwas
trained on 32-atom systems.

Generalization across composition space. The prime objective of the
MLmodel is to accurately predict electron density across the composition

Fig. 4 | Bayesian Active Learning to iteratively select training compositions to
accurately predict across the composition space of the Ternary alloy. a NRMSE
across the composition space after 1st iteration of Active Learning, termed as AL1,
trained using only 3 pure compositions shown using white circles. b Energy pre-
diction error for model AL1 with 3 pure compositions. c Epistemic Uncertainty in ρ
prediction across composition space after prediction with model AL1. Query points
(additional training points) for the next iteration of Bayesian Active Learning are
selected based on the highest uncertainty regions shown in f. d NRMSE across the
composition space after the 2nd iteration of Active Learning. 3 additional training

points are added as per the uncertainty contour in subfigure, c. Thismodel is termed
as AL2. We observe that the NRMSE is low and consistent across the composition
space, showing the effectiveness of query point selection through uncertainty.
e Error in energy prediction across composition space. The unit of energy error is
Ha/atom. The energy error is within chemical accuracy across the composition
space. f Epistemic Uncertainty in ρ prediction across composition space after pre-
diction with model AL2. This figure uses the same colorbars for AL1 and AL2
models. Refer to Fig. S6 in the Supplementary Material for figure with distinct
colorbars.
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space while using only a small fraction of compositions for training. If
successful, this approach would allow for the estimation of any property
of interest for a given alloy at any composition. By leveraging fast ML
inference, the vast composition space of multi-principal element alloys

can be explored much more quickly than with conventional KS-DFT
methods.

To demonstrate the generalizability of the model beyond the training
composition, the electron density for a 64-atom SiGeSn system is predicted

Fig. 5 | Training compositions for the Quaternary system for Active Learning
models. Left: 4 training compositions used for model AL1, Middle: 10 training
compositions used for model AL2, Right: 20 training compositions used for model

AL3. Black spheres indicate compositions on the vertex, blue spheres indicate
compositions on edges, green spheres indicate compositions on faces, and red
spheres indicate compositions inside the tetrahedron.

Fig. 6 | Plots showing NRMSE across composition space with increasing number
of training compositions for SiGeSn (top) and CrFeCoNi (bottom). Right side
plots are a magnified version of the left side plots. The magnified region is indicated
by a black dashed line in the left plot. The training compositions for Tessellation

models are shown in Fig. 3. The training compositions for Active Learningmodels of
SiGeSn are shown in Fig. 4. The training compositions for Active Learningmodels of
CrFeCoNi are shown in Fig. 5. : MaximumNRMSE (AL), : Average NRMSE
(AL), : Maximum NRMSE (T), : Average NRMSE (T).
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across 45 distinct compositions spanning the entire composition space. The
AL2modeluses only 6outof these 45SiGeSncompositions for training.The
prediction errors for the 64-atom system are shown in Figs. 4 and S6 of the
Supplementary Material). For better readability, the values of the density
and energy errors are shown for each composition in Fig. S10 of the Sup-
plementaryMaterial. The average energy error is 4.3 × 10−4 Ha/atom,which
is well within chemical accuracy. To evaluate compositions that are not
feasible to simulate with the 64-atom system, additional test compositions
were generated using a 216-atom SiGeSn system, as shown in Fig. S1 of the
Supplementary Material. The errors in the electron density and energy for
the 216-atom SiGeSn system are presented in Fig. S4 of the Supplementary
Material. The energy errors for these systems too are well within chemical
accuracy, on average. Additionally, the errors in the electron density and
energy for these 216-atom systems are of the same magnitude as those for
the 64-atom systems, indicating generalizability to systems of larger size.

The generalizability of the ML model beyond training composi-
tions is also tested for the quaternary system, CrFeCoNi, by evaluating
the error in electron density predictions across the composition space,
as shown in Fig. 9(a). Note that the AL2model uses only 10 out of these
69 CrFeCoNi compositions for training. The error in the energy
obtained from the predicted electron density for CrFeCoNi system

across the composition space are shown in Fig. 9(b). The AL3 model
displays further improvement; for better readability, the values for
energy errors are shown in Fig. S11 of the SupplementaryMaterial. The
average energy errors (2.3 × 10−3 Ha/atom) are very close to chemical
accuracy, and “worst case” predictions (3.5 × 10−3 Ha/atom) are only
slightly worse. A visualization of the difference between the KS-DFT-
calculated and ML-predicted electron densities for the SiGeSn and
CrFeCoNi systems are shown in Fig. 10.

The aggregated electron density and energy errors for the SiGeSn
and CrFeCoNi systems are shown in Fig. 8. On average, the errors in
energy per atom for the quaternary systems are somewhat higher
compared to the predictions of the ternary alloy cases. However, the
atoms involved in the ternary system also have significantly more
electrons per atom. Upon normalizing the energy errors in terms of the
number of electrons in the simulation, the energy errors for the qua-
ternary system (ρ− SAD or δρmodel) is found to be comparable to the
errors for ternary systems (of the order of 10−4 Ha/electron, on aver-
age), as shown in Fig. 8. Overall, the low errors in prediction of electron
density and energy for binary, ternary and quaternary alloy across the
entire composition space demonstrate the generalization capacity of
the proposed ML model.

Fig. 7 | Plots showing energy error in terms of Hartree/atom across composition
space with increasing number of training compositions for SiGeSn (top) and
CrFeCoNi (bottom). Top left: Bulk 64-atom SiGeSn results across composition
space, logarithmic scale to emphasize the order of magnitude. Top right:Magnified
version of the SiGeSn results, linear scale to emphasize the specific values. Bottom
left: Bulk 32-atom CrFeCoNi results across composition space, logarithmic scale.
Bottom right: Magnified version of the CrFeCoNi results, linear scale. The dashed

lines are present to illustrate the magnification of the magnified plots. Standard
deviation bars are shown in each of the plots. The training compositions for Tes-
sellation models are shown in Fig. 3. The training compositions for Active Learning
models of SiGeSn are shown in Fig. 4. The training compositions for Active Learning
models of CrFeCoNi are shown in Fig. 5. : Maximum Error (AL), : Average
Error (AL), : Maximum Error (T), : Average Error (T).
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Generalization to systemswith defects. We assess the performance of
the ML model on systems containing localized defects, such as mono-
vacancies and di-vacancies, even though the training was conducted
exclusively on defect-free systems. The electron density fields predicted
by the ML model match remarkably well with the KS-DFT calculations,
with error magnitudes for defective systems comparable to those for
pristine systems, as shown in Fig. 8. Further details on thematch between
theML-predicted andKS-DFT-obtained ρfields are provided in Fig. S7 of
the SupplementaryMaterial. In addition to accurately predicting electron
density, the energy errors remain within chemical accuracy. Note that for
these systems, the atomic configurations away from the defects are quite
close to the equilibrium configuration (see Fig. S7 of the Supplementary
Material), resulting in very low errors in the ML predictions away from
the defects. Consequently, the overall error remains low.

Generalization to handcrafted systems featuring species segrega-
tion. In multi-element alloys, species segregation naturally occurs, lead-
ing to the formation of element-enriched regions within the alloy75,99.
Therefore, it is important to evaluate the model for these systems.
Towards this, handcrafted systems featuring species segregation are
created. Cubic simulation cells of 64 and 216 atoms occupying diamond
lattice sites are divided up into smaller cubic sub-regions, i.e. either 8 bins
(2 × 2 × 2) for the 64-atom and 216-atom cells, or 27 bins (3 × 3 × 3) for
the 216-atom cell. Elemental labels are then assigned to each bin, such
that no two neighboring bins contain the atoms of the same element,
with periodic boundaries taken into consideration as well. In the 8-bin
case, three compositions were considered: Si0:25Ge0:375Sn0:375,
Si0:375Ge0:25Sn0:375, and Si0:375Ge0:375Sn0:25. In the 27-bin case, just the
equiatomic SiGeSn case was considered (e.g. Si0:33Ge0:33Sn0:33). The
errors in electron density predicted by the ML model as well as in the
corresponding energy for these handcrafted systems featuring species
segregation, are shown in Fig. 8, i.e., ‘checkerboard SiGeSn’. The errors
for these unseen systems featuring species segregation are quite low,
asserting the generalizability of the ML model.

Comparison of ML Models Trained on ρ and δρ
The performance of the MLmodel on the CrFeCoNi system lagged behind
that of the SiGeSn system in terms of energy predictions as shown in Fig. 8
(middle and bottom). In order to address that, we trained a separate ML
model, only for the quaternary system CrFeCoNi. This model predicts the
δρ, which is the difference between the electron density ρ and the super-
position of atomic densities (SAD), denoted ρSAD, i.e., δρ = ρ − ρSAD. We
refer to this ML model as the ‘δρMLmodel’ to distinguish it from the ML

model described previously. To obtain the ρ while using the δρmodel, the
ρSAD needs to be added to its prediction. The energy computation through
post-processing of ρ remains the same. The δρML model performs better
than theMLmodel for both the density and energy predictions, as shown in
Fig. 8. The error in the energy predicted by the δρMLmodel is presented in
Fig. 9 for various compositions of the CrFeCoNi system. The δρMLmodel
reduced themaximum error in energy by a factor of two, compared to the ρ
ML model.

In the following, we explain the superior performance of the δρ ML
model for the CrFeCoNi system. In contrast to the quadrivalent, softer Si,
Ge, and Sn pseudopotentials that were used in producing the electron
density data of the SiGeSn systems, the pseudopotentials for Cr, Fe, Co, and
Ni all included semi-core states and were significantly harder. Each pseu-
doatom of the elements involved in the CrFeCoNi system involved 14 or
more electrons, and CrFeCoNi calculations generally involved a mesh that
was twice as fine as the SiGeSn systems. Unlike the valence electrons, the
semi-core states are not as active in bonding, yet the individual densities of
these atoms have large contributions from their semi-core states. Thus, even
in the presence of chemical bonding, as it happens in the alloy, the electron
density field tends to concentrate around the nuclei, due to which it can be
well approximated in terms of the superposition of the atomic densities, i.e.,
ρSAD. Hence, by training theMLmodel on the difference, i.e., δρ = ρ− ρSAD,
better accuracy can be achieved. These issues pertaining to semi-core states
can become particularly important while computing energies from
the electron density. The ground-state KS-DFT energy has a large
contribution from the electrostatic interactions100, and the δρ ML
model captures the contribution to this energy from the atomic sites
much more accurately, since the atomic densities are better repre-
sented, particularly when semi-core states are present. This claim is
further supported by Fig. 11 where we compared the electrostatic
energy field E ¼ ðρþ bÞϕ, as calculated from the (ρ-based) ML model
and the δρ ML model for a CrFeCoNi system. Here, b denotes the
nuclear pseudo charge field and ϕ is the electrostatic potential that
includes electron-electron, electron-nucleus, and nucleus-nucleus
interactions. The δρ ML model is seen to perform significantly bet-
ter in terms of the error in the electrostatic energy field, particularly
near the nuclei.

Discussion
We have presented a machine learning (ML) framework that accurately
predicts electron density for high entropy alloys at any composition. The
model demonstrates strong generalization capabilities to various unseen
configurations. It efficiently represents the chemical neighborhood,

Fig. 8 | Demonstration of accurate prediction of electron density and energy
across the composition space of the Quaternary alloy. a NRMSE in electron
density for the pristine 32-atomCrFeCoNi data set for the AL2model trained on δρ.

Note that the order of magnitude of the colorbar is 10−2. b Corresponding average
error in energy at test compositions for the pristine 32-atom CrFeCoNi data set, in
terms of Ha/atom. Note that the order of magnitude of the colorbar is 10−3.
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increasing modeling efficiency, and trains on an optimal set of the most
informative compositions to reduce the amount of data required for training.
The electron density predicted byML can be postprocessed to obtain energy
and other physical properties of interest. Currently, a generally accepted rule-
of-thumb for quantum mechanical calculations is to aim for chemical accu-
racy, i.e., a prediction error of 1.6mHa/atom (1 kcal/mole) or less, in the total

energies101–105. This is often crucial for making realistic chemical predictions,
especially regarding thermochemical properties like ionizationpotentials and
formation enthalpies. On average, for all the alloy systems studied here, our
MLmodel demonstrated accuracies that met or were very close to achieving
this threshold (see Fig. 8), thus making them accurate enough for the sub-
sequent tasks they were applied to. Thus, the proposedMLmodel allows for
the accelerated explorationof the complex composition space of high entropy
alloys. Further improving the energy predictions of our model to enable
routine calculationsofquantities suchasphonon spectra,which requiremore
accurate energies106 remains the scope of future work. We also note that this
appears to be an open area of research across a variety ofML-based atomistic
calculation models107.

The ML model employs a Bayesian neural network (BNN) to map
atomic neighborhood descriptors of atomic configurations to electron
densities. A key challenge for multi-element alloys is that the size of the
descriptor vector increases rapidly with the number of alloying elements,
necessitating more training data and larger ML models for accurate pre-
diction. To address this, we propose body-attached frame descriptors that
maintain approximately the same descriptor-vector size, regardless of the
number of alloying elements. These proposed descriptors are a key enabler
of our work. Moreover, they are easy to compute and inherently satisfy
translational, rotational, and permutational invariances, eliminating the
need for any handcrafting. Furthermore, obtaining the optimal number of
descriptors required is simpler for these descriptors compared to the few
proposed earlier in the literature.

The composition space of multi-element alloys encompasses a vast
number of compositions, demanding extensive ab initio simulation data to
develop anMLmodel that is accurate across the entire space. To address this
challenge, we developed a Bayesian Active Learning approach to select a
minimal number of training compositions sufficient for achieving high
accuracy throughout the composition space. This approach leverages the
uncertainty quantification (UQ) capability of a Bayesian Neural Network,
generating data only at the compositions where the model has the greatest
uncertainty, thereby minimizing the cost of data generation.

We generate first principles data at various high temperatures, as
thermalization helps produce data with a wide variety of atomic config-
urations for a given composition, enhancing the generalizability of the ML
model beyond equilibrium configurations. Additionally, the Bayesian
Neural Network enhances generalization through ensemble averaging of its
stochastic parameters. The generalization capability of the ML model is
demonstrated by its ability to accurately predict properties for systems not
included in the training set, such as unseen alloy compositions, systemswith
localized defects, and systemswith species segregation. The errors in energy
for all test systems remain well within or close to chemical accuracy.

The proposed model demonstrates remarkable accuracy for binary,
ternary, and quaternary alloys, including SiGe, SiGeSn, andCrFeCoNi, all
of which are of technical importance. However, the proposed framework
can be applied to any alloys containing a large number of constituent
elements. Although our examples involved bulk systems, the models also
extend to low-dimensional materials featuring chemical complexity and
disorder. Furthermore, the model can be applied to predict other elec-
tronic fields. For the quaternary alloy, we develop a separate MLmodel to
learn ρ− ρSAD instead of ρ, enabling amore accurate representation of the

Fig. 9 | Plots showing highly accurate electron density and energy predictions for
all systems assessed in this work. The comparative results shown here were
obtained with the ternary AL2 model and the quaternary AL2 model, respec-
tively. Top: Accuracy in charge density predictions, in terms of relative L1.Middle:
Accuracy in energy predictions obtained from post-processing the charge densities,
in terms of Hartree/atom. Bottom: Accuracy in energy predictions, presented in
terms of Hartree/electron. Note that Middle and Bottom plots have logarithmic
scale. The SAD baseline and AlCrFeCoNi system are discussed in Supplementary
Material. Top: : Maximum Error, : Average Error. Middle: : Maximum
Error, : Average Error, : 1 × 10−2, : 1 × 10−3, : 1 × 10−4.Bottom: :
Maximum Error, : Average Error, : 1 × 10−2, : 1 × 10−3, : 1 × 10−4.
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density of semi-core states and significantly enhancing the overall accu-
racy of ρ and energy predictions.

Overall, the proposed model serves as a highly efficient tool for navi-
gating the complex composition space of high entropy alloys and obtaining
ground-state electron density at any composition. From this ground-state
electron density, various physical properties of interest can be derived,
making the model a powerful resource for identifying optimal material
compositions tailored to specific target properties. Future work could focus
on developing a universal ML framework that utilizes the proposed
descriptors and functions accurately across diversemolecular structures and
chemical spaces.

Methods
The methodology implemented in this work can be divided into six sub-
sections: (1) the training data and test data generation; (2) the machine
learning map for charge density prediction; (3) the atomic neighborhood
descriptors; (4) the implemented Bayesian Neural Network; (5) Bayesian
optimization and uncertainty quantification; (6) postprocessing and
materials property analysis. In the following section, our methodology
choices for each area are thoroughly discussed.

Data generation
To generate the electron density data, we use SPARC (Simulation Package
for Ab-initio Real-space Calculations), which is an open-source finite

difference-based ab initio simulation package100,108–110.Weuse the optimized
norm-conserving Vanderbilt (ONCV) pseudo-potentials111 for all the ele-
ments. For Si, Ge, and Sn pseudopotentials only the valence electrons are
included, while for Cr, Fe, Ni, andCo semi-core states are also included.We
use the Perdew-Burke-Ernzerhof (PBE) generalized gradient approxima-
tion (GGA) as the exchange-correlation functional112.

Real-space meshes of 0.4 Bohr and 0.2 Bohr were used for the SiGeSn
and CrFeCoNi systems, respectively. These values were obtained after
performing convergence testing on the bulk systems, and guaranteed con-
vergence of the total energy to within 10−4 Ha/atom. Periodic-Pulay
mixing113 was employed for self-consistent field (SCF) convergence accel-
eration, and a tolerance of 10−6 was used. Only the gamma point in reci-
procal space was sampled, as is common practice for large-scale condensed
matter systems. Fermi-Dirac smearing with an electronic temperature of
631.554 Kelvin was used for all the simulations.

The atomic coordinate configurations that were fed into SPARC were
obtained via sampling from high-temperature molecular dynamics trajec-
tories— either ab initio molecular dynamics (AIMD) calculations or clas-
sical molecular dynamics (MD) using state-of-the-art machine learning
interatomic potentials. To ensure comprehensive coverage of local atomic
environments and to improve model generalizability, simulations were
performed at elevated temperatures, consistent with our prior
observations47. For each composition, atomic species labels were randomly
assigned to lattice sites consistentwith the target stoichiometry, andmultiple

Fig. 11 | Comparison of ML model and the δρML
model by analyzing errors in the electrostatic
energy field, for the CrFeCoNi system.
a Electrostatic energy field E ¼ ðρþ bÞϕ for the KS-
DFT calculation. Here ρ is the electron density, b
denotes the nuclear pseudo charge field and ϕ is the
electrostatic potential that includes electron-elec-
tron, electron-nucleus and nucleus-nucleus inter-
actions. b The errors in the calculated electrostatic
energy predicted field obtained through the
(ρ-based) ML model. c The errors in the calculated
electrostatic energy predicted field obtained through
the δρML model. Most errors are seen to be con-
centrated around the atomic nuclei and are sig-
nificantly reduced in the case of the δρML model.
ML predictions are carried out using the AL2model.

Fig. 10 | Comparison of ML predicted and KS-
DFT obtained electron density. Electron densities
(a, d) calculated by KS-DFT and b, e predicted by
ML, and the Error (absolute difference) between
them (c, f) for SiGeSn (a–c) and CrFeCoNi (d–f),
using the AL2model. Subplots (a–c) correspond to a
64-atom Si12.5Ge37.5Sn50 simulation cell at 2400K.
Subplots (d–f) are a 32-atom simulation cell at
5000K corresponding toCr25Fe25Ni25Co25δρmodel,
respectively. The values below the snapshots refer to
the iso-surface values. The visualization is done with
the VESTA147 software.
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distinct seeds (orderings) were used as starting points for AIMD/MD tra-
jectories. This procedure yields ensembles that, for the datasets used in this
work, correspond to fully chemically disordered alloys. Additionally, we
generated targeted “hand-crafted” configurations featuring, for example,
species segregation and defects which were used in generalizability tests
(described in detail in the Supplementary Materials).

For the SiGeSn system, AIMD was performed, as per the methodology
of our previous work47. However, AIMD simulations can be time-consuming
as one has to perform an electronic minimization at each MD step. The
increased number of electrons required to model the CrFeCoNi system
motivated an alternative approach. In order to alleviate the computational
burden of configurational sampling for the CrFeCoNi system, we leveraged
classical molecular dynamics (MD) instead of AIMD. The interatomic
potential selected for the MD runs is the Materials 3-body Graph Network
(M3GNet), a universal machine-learned potential implemented in the
(Materials Graph Library)MatGL python package114,115. TheMD simulations
are run through the Atomic Simulation Environment (ASE) interface built
into MatGL. After extracting snapshots from the MD trajectory, a single
electronic minimization step is performed to obtain the electron densities.
MD with machine learned interatomic potentials is orders of magnitude
cheaper compared to AIMD, and the subsequent electronic minimization
tasks (for given system snapshots) can be conveniently parallelized. This
approach facilitates rapid data generation for various configurations without
any quality loss for the electron density training data.

The compositions for which data was generated are shown in Fig. S1
for the SiGeSn system and in Fig. S2 for the CrFeCoNi system. For more
details regarding the data generation, please refer to the Supplementary
Material.

Machine learning map for charge density prediction
OurMLmodelmaps the atomcoordinates fRIgNa

I¼1 and species (with atomic
numbers fZIgNa

I¼1) of the atoms, and a set of grid points frig
Ngrid

i¼1 in a com-
putational domain, to the electron density values at those grid points. Here,
Na and Ngrid refer to the number of atoms and the number of grid points,
within the computational domain, respectively. We compute the afore-
mentionedmap in two steps. First, given the atomic coordinates and species
information, we calculate atomic neighborhood descriptors for each grid
point. Second, a Bayesian Neural Network is used to map the descriptors to
the electrondensity at each grid point. These two steps are discussed inmore
detail subsequently.

Atomic neighborhood descriptors
One major challenge in predicting electron density for multi-element sys-
tems is the rapid increase in the number of descriptors as the number of
species grows, which hampers both efficiency and accuracy. For example,
the scalar product descriptors developed in ref. 47 increases rapidly with the
number of species. Additionally, descriptors should be simple, easy to
compute and optimize, and avoid manual adjustments like selecting basis
functions. To address these issues,wepropose anovel descriptor that utilizes
position vectors to atoms represented in body-attached reference frames.
The proposed descriptor overcomes the scaling issue faced by the scalar
product47, tensor invariant based29, and SNAP116 descriptors, since the
number of position vectors needed depends only on the number of atoms in
the atomic-neighborhood but is independent of the number of species.

We encode the local atomic neighborhood using descriptors Di.
Descriptors are obtained for each grid point frig

Ngrid

i¼1 in the computational
domain. Following the nearsightedness principle28,117,118, we collect M
number of nearest atoms to the grid point i to compute the descriptors for
grid point i. This is analogous to setting a cutoff radius for obtaining the local
atomic neighborhood. The descriptors for the grid point i are denoted as
Di 2 R4M . For the jth atom, descriptors are given as:

ðDiÞj ¼ rk k; r
0
1

rk k ;
r02
rk k ;

r03
rk k

� �
j

ð1Þ

where (r1
0, r2

0, r3
0) are the coordinates of the position vector r of atom jwith

respect to a global reference frame at the grid point i. j varies from 1 toM.
The basis vectors for the global reference frame are denoted as e01; e

0
2; e

0
3.

The above descriptors are not frame invariant and hencewould change
under rotation of the computational domain. Since the electron density is
equivariant with respect to the given atomic arrangement, it is imperative to
maintain equivariance. To address this issue, we propose to determine a
unique local frame of reference for the atomic neighborhood and express
these coordinates in that local reference frame. In previous works, such a
local frame of reference is constructed using two119 or three32 nearest atoms.
However, as mentioned in ref. 119, these local frame descriptors exhibit
non-smooth behavior when the order of nearest neighbors is altered or
when there is a change in the nearest neighbors themselves. To address this
issue, in this work, we obtain the local frame of reference using Principal
Component Analysis (PCA) of an atomic neighborhood consisting of M
atoms. We apply PCA to position vectors of these atoms and obtain prin-
cipal directions, which yield an orthonormal basis set e1, e2, e3.We represent
the components of the position vectors of the atomswith respect to this new
basis set. Thus, the p-th component of the position vector of atom j with
respect to a new reference frame at the grid point i is given
by rp ¼ ep � e0q

� �
r0q . The Einstein summation convention is used; repeated

indices have the range of 1, 2, 3. The components of r in the new reference
frame are denoted by (r1, r2, r3) in the following.

In order to handle systems with multiple chemical species, species
information needs to be encoded in the descriptors. One strategy proposed
in previous work is to compute descriptors for individual species and
concatenate thedescriptors29.Another strategy is to encode chemical species
through a one-hot vector119. In thiswork, we encode the species information
using the atomic numberof the species. The atomic numberof the j-th atom
is denoted as Zj. Incorporating the species information, the updated
descriptors are Di 2 R5M are given as,

Di ¼ Zj; rk k; r1
rk k ;

r2
rk k ;

r3
rk k

� �� �
j¼1; ... ;M

ð2Þ

Therefore, the number of proposed descriptors does not increase with the
number of species present in the alloy, for a fixedM.

The computational time required to calculate the proposed descriptors
is about twice the time required by scalar product descriptors38 and
approximately the same as SNAP descriptors120,121.

Selection of the optimal set of descriptor. The nearsightedness
principle117,118 and screening effects122 imply that electron density at a
given grid point is minimally influenced by atoms far away. This suggests
that only descriptors fromatoms close to a grid point are necessary for the

Fig. 12 | Determination of the optimal set of descriptors. For each “M”, we
compute the descriptors for the training data, train the neural network and calculate
the test NRMSE. The SiGeSn system was used for this study.
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ML model. However, the optimal set of descriptors for accuracy are not
known a priori and can be computationally expensive to determine
through a grid search123.

Using an excessive number of descriptors can increase the computa-
tional cost of descriptor calculation, model training, and inference. It can
also lead to issues like the curse of dimensionality, reducing the model’s
prediction performance124–127, or may necessitate a larger neural network to
learn effectively. Conversely, using too few descriptors results in an
incomplete representation of atomic environments, leading to an
inaccurate model.

Selection of an optimal set of descriptors has been explored in prior
works, particularly for Behler-Parinello symmetry functions128,129 or widely
used Smooth Overlap of Atomic Positions (SOAP)130 descriptors123. These
systematic procedures for descriptor selection eliminate the trial-and-error
approach often usedwhen finalizing a descriptor set. In ref. 129, the authors
demonstrated that anoptimized set of descriptors can enhance the efficiency
of MLmodels. Therefore, selecting an optimal set of descriptors for a given
atomic system is crucial for balancing computational cost and prediction
accuracy. Let M (M ≤ Na) be a set of nearest neighboring atoms for grid
points. We compute the descriptors for various M and the corresponding
errors in an ML model’s prediction. The optimal value ofM is the one that
minimizes the error. Figure 12 shows the error in theMLmodel’s prediction
for different values ofM for the SiGeSn system, showing that the optimum
value ofM is near 55.Computationof error in theMLmodel’s prediction for
eachM involvesdescriptor computation, trainingof theneural network, and
testing, and therefore is computationally expensive. Given that a neural
network needs to be trained for each selectedM, descriptor optimization is
challenging. In our previous work47, we demonstrated descriptor con-
vergence; it required training of 25 neural networks to obtain the optimal
number of descriptors forAluminum. In this work, because of the proposed
descriptors, descriptor convergence requires training of only 7 neural net-
works. Most existing approaches to descriptor convergence involve opti-
mizing the cutoff radius (analogous to the number of nearest atoms) and the
number of basis functions29,129. In contrast, the proposed descriptors in this
work require optimization with respect to only one variable,M, the number
of nearest atoms. This significantly reduces the time needed to identify the
optimal set of descriptors. Once optimized, we used the same value of M
across binary, ternary, and quaternary alloys. Our results show errors of
similar magnitude across all these systems, giving us confidence in our
choice.

Equivariance through invariant descriptors. The proposed descriptors
are invariant to rotation and translation, as the position vectors are
represented through a unique body-attached reference frame at the grid
point. Additionally, invariance to the permutation of atomic indices is
maintained, since the position vectors are sorted based on their distance
from the origin. Given that the predicted electron density is a scalar-
valued variable, the invariance of the input features is sufficient to ensure
the equivariance of the predicted electron density under rotation,
translation, and permutation of atomic indices, as noted in
references47,53,131.

Bayesian neural network
Bayesian Neural Networks are the stochastic counterparts of the
traditional deterministic neural networks with advantages such as
better generalization and robust uncertainty quantification. We train
a Bayesian Neural Network (BNN) to predict the probability dis-
tribution, P(ρ∣x, D), of the output electron density (ρ), given a set of
training data, D ¼ fxi; ρigNd

i¼1, and an input descriptor x 2 RNdesc . In
BNNs, this is achieved by learning stochastic network parameters in
contrast to the deterministic parameters learned in a traditional deep
neural network. By assuming prior distribution P(w) for the network
parameters w ∈ Ωw, the posterior distribution P(w∣D) is obtained
from the Bayes’ rule as P(w∣D) = P(D∣w)P(w)/P(D). Here w ∈ Ωw is
the set of parameters of the network and P(D∣w) is the likelihood of
the data.

However, the term P(D) – known as the model evidence – is intract-
able, since it involves a high dimensional integral which in turn results in an
intractable posterior distribution P(w∣D). Therefore, the posterior dis-
tribution is approximated by variational inference132–136. In variational
inference, the intractable posterior P(w∣D) is approximated by a tractable
distribution, called the variational posterior (q(w∣θ)), from a known family
of distributions such as the Gaussian. The parameters (θ) of the distribution
q(w∣θ) are optimized such that the statistical dissimilarity between the
variational posterior and the true posterior isminimized. If the dissimilarity
metric is taken as the KL divergence, we get the following optimization
problem:

θ� ¼ argmin
θ

KL qðwjθÞ jjPðwjDÞ� 	
¼ argmin

θ

R
qðwjθÞ log qðwjθÞ

PðwÞPðDjwÞ PðDÞ
h i

dw:
ð3Þ

This leads to the following loss function for BNN that has to be
minimized:

FKLðD; θÞ ¼ KL qðwjθÞ jjPðwÞ� 	�EqðwjθÞ½log PðDjwÞ�: ð4Þ

Once the posterior distribution of the parameters are approximated by
variational inference, the probability distribution for the output can be
evaluated by marginalizing over w as:

Pðρjx;DÞ ¼
Z

Ωw

Pðρjx;wÞPðwjDÞdw ð5Þ

�
Z

Ωw

Pðρjx;wÞqðwjθÞdw: ð6Þ

Thismarginalization helps in improving generalization, as it is equivalent to
learning anensemble of deterministic networkswithdifferent parametersw.
Furthermore, the variance of this distribution P(ρ∣x, D) is a measure of
model uncertainty in the predictions.

Uncertainty quantification
Bayesian Neural Networks provide a natural way to quantify uncertainties,
since they predict a probability distribution for outputs. The uncertainties in
the prediction can be classified as ‘aleatoric’ and ‘epistemic’ uncertainties.
Aleatoric uncertainty stems from the natural variability in the system, such
as noise in the training data.Whereas, epistemic uncertainties are a result of
model uncertainties, such as the uncertainty in the parameters of themodel.

Variance in the output distribution P(ρ∣x, D) is a measure of uncer-
tainty in the model prediction. The variance of this distribution is given as:

varðρÞ ¼ σ2ðxÞ þ 1
Ns

XNs

j¼1

bρj� �2
� EðbρjÞ� �2

" #
: ð7Þ

Initial training data

Optimal network

Optimize acquisition 

function

Train Bayesian 

Neural Network

Bayesian Active Learning

Validate 

Augment 

training data

Perform ab initio 

calculations

Suggest next input 

to label

Fig. 13 | Schematic of the Bayesian active learning framework.
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To evaluate this variance, a jth sample for each parameter is drawn
following the learnedposterior distributionsq(w∣θ) for theparameters of the
network.Thenetwork is thenevaluated for this sample topredict the output,bρjðxÞ, for a given input.This process is repeated for a total ofNs samples.This
enables us to evaluate the epistemic uncertainty, which is the second termof
Eq. (7). Next, σ(x) –which is a heterogeneous noise parameter representing
the aleatoric uncertainty – can be predicted by the network along with the
output ρ. For a Gaussian likelihood, the noise σ(x) can be learned through
the likelihood term of the loss function Eq. (4) following ref. 137 as:

log PðDjwÞ ¼
XNd

i¼1

� 1
2
log σ2i �

1
2σ2i

ðf wN ðxiÞ � ρiÞ2: ð8Þ

Here, Nd is the size of the training data set.
In a well-calibrated model, the predictive distribution of the output

closely resembles the empirical distribution of the data. However, it is to be
noted that the uncertainties presented in this work are uncalibrated. While
calibration canprovide better estimates of uncertainties, only theorderingof
the uncertainty estimates among different compositions matters for the
active learning framework employed here. Since calibration methods such
as the ones presented in138,139 do not affect this ordering, recalibration was
not performed in this work.

Bayesian active learning
The number of possible stoichiometric compositions in ternary and qua-
ternary alloys is very large. Thus KS-DFT calculations on all of these
compositions to create a MLmodel are quite expensive. There might be an
optimal subset of compositions that contains sufficient information to train
a ML model. However, such subsets are not known a priori. We utilize the
Active Learning technique to identify such an optimal subset of composi-
tions to reduce the cost of data generation through KS-DFT.

Active learning is a machine learning algorithm that can query data
points that need to be labeled to learn a surrogate model. Active learning is
primarily used when the computational cost associated with generating the
training labels is high.A schematic ofBayesian active learning is shown inFig.
13. In the first step, an initial set of training data is generated by ab initio

calculations and a Bayesian Neural Network model is trained on this initial
training set. The second step involves optimizing an acquisition function. In
active learning, an acquisition function explores the input space to find the
next input point that is most informative to learn the input-output rela-
tionship. In this work, we hypothesize that the composition (or the set of
compositions) with the highest epistemic uncertainty in the predictions
contains the most information to learn the surrogate model. Therefore, the
epistemic uncertainty in the predictions obtained by the Bayesian Neural
Network as explained in the previous section is used as the acquisition
function. Optimization of this acquisition function is achieved by evaluating
the test compositionsusing theBayesiannetwork toobtain theoneswithhigh
uncertainties in their predictions. As a third step of the active learning fra-
mework, ab initio calculation needs to be performed for the compositions
with high uncertainties found by optimizing the acquisition function. As a
final step, this new data is appended to the training set, and the first, second,
and third steps are repeated until a satisfactory model is learned. In our
present study, once a compositionwas identified for appending to thedataset,
all the configuration snapshots (of varying atomic arrangements) associated
with that composition were included in the next batch of training data.

To get a sense of the baseline errors while predicting across composi-
tion space, and to demonstrate the advantage of the Bayesian AL technique
over the random selection of compositions, we have compared the errors
from these two approaches in Fig. 14. Both approaches used the same
number (20) of compositions and the same amount of data. The advantage
of the BayesianAL technique is evident from the plot. Three different sets of
randomly chosen compositions were used to develop threeMLmodels and
the error bars indicate the range of maximum NRMSE values observed
across these models.

Tessellation-based Iterative Training
In Tessellation-based Iterative Training, we iteratively train the ML model
on progressively larger subsets of compositions. We select the subsets by
progressively refining the tessellation of the composition spaces. We tes-
sellate the triangular and tetrahedral spaces of ternary and quaternary
compositions using regular triangles and tetrahedrons. Successive levels of
refinement are shown in Fig. 3. The training compositions are chosen at the
vertices of these triangles and tetrahedrons. The four triangular tessellations
are denoted as T1, T2, T3, and T4, corresponding to 3, 6, 9, and 15 training
points, respectively. However, the edge points of T3 do not include the edge
points of T2. Therefore, we skip the T3 iteration and use T4 directly as the
next iteration after T2 to ensure that no training data is discarded. For the
quaternary system, tessellation iterations T1, T2, and T4, using regular
tetrahedrons yields 4, 10, and 34 vertex points, respectively. The second level
of refinement includes all 10 compositions on the edges or vertices of the
tetrahedrons and, therefore, does not have any composition that includes
more than two elements. It has an octahedral space in the middle of the
smaller tetrahedrons (see Fig. 1 of ref. 140 and Fig. 3).We choose to use the
midpoint of the octahedron as an additional training composition, leading
to a total of 11 training compositions for the second level of refinement.

Postprocessing
Since much of the utility of predicting charge densities lies in the physical
parameters that can be obtained from them, it is prudent to verify how well
our model predicts downstream quantities. Here, we focus on computing
the total ground state energy as a postprocessing step to validate the pre-
dictions of our model. Further material properties of interest, e.g., defect
formation energies, etc., can be calculated from these computed energies.
The postprocessing step is accomplished as follows. First, the predicted
electron densities are rescaled by the total number of electrons:

ρscaled rð Þ ¼ ρMLðrÞ NeR
Ωρ

MLðrÞdr : ð9Þ

where Ω is the periodic supercell used in the calculations, and Ne is the
number of electrons in the system. This step serves to ensure that the total

Fig. 14 | Advantage of Bayesian Active Learning over random selection of
compositions. This figure compares the maximumNRMSE across the composition
space of the CrFeCoNi quaternary system using two different sampling strategies.
The first bar shows the result from amodel trained with 20 compositions selected via
Bayesian Active Learning. The second bar corresponds to one of three models
trained on 20 randomly selected compositions; the error bars indicate the range of
maximumNRMSE values observed across the threemodels. All models were trained
using the same number of data points, demonstrating the improved accuracy
achieved through Bayesian Active Learning.
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system charge is accurately preserved by the ML predictions; this has been
found to be important for obtaining high-quality predictions in the
energy38,141. Next, the scaled densities are input to the same real-space
electronic structure calculation framework, as used for data
generation100,108–110,142,143. The same calculation settings (e.g., real spacemesh
size, pseudopotentials, exchange-correlation functional, etc.) are chosen for
the post-processing steps, which involve setting up of the Kohn-Sham
Hamiltonian using the scaled electron density, diagonalization of the
Hamiltonian, and subsequent calculation of theHarris-Foulkes energy144,145:

EHarris�Foulkes ¼ Eband þ Exc � EVxc

þ Eelectrostatics þ Eelec�entropy:
ð10Þ

Here, the first term and the last term on the right hand side denote the
electronic band-structure energy (Eband) and the electronic entropy
contributions (Eelec−entropy), respectively. These terms are directly depen-
dent on the eigenstates of the Hamiltonian, while the remaining right-hand
terms are calculated readily from electron densities. The terms Exc and EVxc
denote contributions fromthe exchange correlation energy and its potential,
respectively. The term Eelectrostatics arises from electrostatic interactions and
includes electron-electron, electron-ion, and ion-ion contributions, as well
as corrections from pseudocharge self-interactions and overlaps100,110. The
specific forms of each of the terms on the right-hand, as well as their
implementation within the SPARC electronic structure code used in this
work, are available in100,110. Notably, the Harris-Foulkes energy is chosen
since it is known to be less sensitive to self-consistency errors, and is
therefore known to give a better estimate of the true Kohn-Sham ground-
state energy146.

The total energy errors for the systems considered in this work are
summarized in Fig. 8. Additionally, Figs. S10–S11 in the Supplementary
Material display the energy errors across the individual compositions con-
sidered. Performing this postprocessing step is an important component of
the work, allowing us to observe the extent to which subtle errors in charge
density predictions could propagate to downstream system properties.

Data availability
Raw data were generated at Hoffman2 High-Performance Compute Cluster
at UCLA’s Institute for Digital Research and Education (IDRE) andNational
Energy Research Scientific Computing Center (NERSC). Derived data
supporting the findings of this study are available from the corresponding
author upon request. Computer codes supporting the findings of this study
are available from the corresponding author upon reasonable request.

Code availability
Codes supporting the findings of this study are available from the corre-
sponding author upon reasonable request.
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